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HEAT CONDUCTION
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OBJECTIVES:

1. To learn different modes of heat transfer
2. To provide knowledge heat transfer through conduction,
convection & radiation

Outcomes:

1. Student will be able to understand how heat & energy is
transferred between elements of a system.
2. Able to solve problems involving one or more modes of heat

transfer.

DEPARTMENT OF MECHANICAL ENGINEERING
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Introduction

Heat is fundamentally transported, or “moved,” by a temperature gradient; it flows or
is transferred from a high temperature region to a low temperature one. An
understanding of this process and its different mechanisms are required to connect
principles of thermodynamics and fluid flow with those of heat transfer.

Thermodynamics and Heat Transfer

Thermodynamics is concerned with the amount of heat transfer as a system undergoes
a process from one equilibrium state to another, and it gives no indication about how
long the process will take. A thermodynamic analysis simply tells us how much heat must
be transferred to realize a specified change of state to satisfy the conservation of energy
principle.

In practice we are more concerned about the rate of heat transfer (heat transfer per
unit time) than we are with the amount of it. For example, we can determine the amount
of heat transferred from a thermos bottle as the hot coffee inside cools from 90°C to
80°C by a thermodynamic analysis alone.

But a typical user or designer of a thermos is primarily interested in how long it will be
before the hot coffee inside cools to 80°C, and a thermodynamic analysis cannot answer
this question. Determining the rates of heat transfer to or from a system and thus the
times of cooling or heating, as well as the variation of the temperature, is the subject of
heat transfer (Figure 1.1).

Thermos

bcmﬁ

NV

N\ Insulation
Fig. 1.1 Heat transfer from the thermos

Thermodynamics deals with equilibrium states and changes from one equilibrium state
to another. Heat transfer, on the other hand, deals with systems that lack thermal
equilibrium, and thus it is a nonequilibrium phenomenon. Therefore, thestudy of heat
transfer cannot be based on the principles of thermodynamics alone.

However, the laws of thermodynamics lay the framework for the science of heat
transfer. The first law requires that the rate of energy transfer into a system be equal



to the rate of increase of the energy of that system. The second law requires that heat
be transferred in the direction of decreasing temperature (Figure 1.2).
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Fig. 1.2 Heat transfer from high temperature to low temperature

Application Areas of Heat Transfer

— Many ordinary household appliances are designed, in whole or in part, by using the
principles of heat transfer. Some examples:

— Design of the heating and air-conditioning system, the refrigerator and freezer, the
water heater, the iron, and even the computer, the TV, and the VCR

— Energy-efficient homes are designed on the basis of minimizing heat loss in winter and
heat gain in summer.

— Heat transfer plays a major role in the design of many other devices, such as car
radiators, solar collectors, various components of power plants, and even spacecraft.

— The optimal insulation thickness in the walls and roofs of the houses, on hot water or
steam pipes, or on water heaters is again determined on the basis of a heat transfer
analysis with economic consideration (Figure 1.3)
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Fig. 1.3 Application of heat transfer



MODES OF HEAT TRANSFER

Heat transfer is defined as the transfer of heat from one region to
another by virtue of the temperature difference between them. The devices
for transfer of heat are called heat exchangers. The concept of heat transfer
is necessary for designing heat exchangers like boilers, evaporators,
condensers, heaters and many other cooling and heating systems.

There are three modes of Heat transfer as follows:

1. Conduction
2. Convection
3. Radiation.

1. Conduction

Heat is always transferred by conduction from high temperature
region to low temperature region. The conduction heat transfer is due

&

Fig. 1.1 Henling

to the property of matter and molecular transport of heat between two
regions due to temperature difference.

When one end of a rod gets heated, the atoms in that end get
enlarged and vibrated due to heating. The enlarged, vibrated atoms touch
the adjacent atom and heat is transferred. Similarly, all the atomg are
heated, thereby the heat is transferred to the other end. This type of
heat transfer is called as conduction heat transfer.

In solids, heat is conducted by

1.  Atomic vibration — The faster moving, vibrating atoms in the hoy
area transfer heat to the adjacent atoms.

2. By transport of free electrons.

Heat is also conducted in liquid and gases by the following mechanisy,

1. The kinetic energy (K.E) of a molecule is a function of
temperature. When these molecules’ temperature increases, the K.E. increases,

2. The molecule from the high temperature region collides with
a molecule from the low temperature region and thus heat is transferred.



CONDUCTION

Most of the heat transfer problems involve a combination of all
the three modes of heat transfer. But it will be useful, if we study each
mode of heat transfer one by one. Hence, in the forth coming section,
we can study conduction, convection and radiation separately and in
some cases we can study with combination. :

1.2.1 Fourier’s law of heat conduction

Fourier’s law states that

‘the Conduction heat transfer
through a solid is directly
proportional to
1. The area of section (A) at

right angle to the direction O-—T—L- Ty

of heat flow.
2. The change in temperature

(dT) in between the two | T

faces of the slab and Q
3. Indirectly proportional to X ——e—t=— dX ——

the thickness of the slab

(dx).

Plane wall ar Slab Fig. 1.2
0=AY;

wheré QO = heat conducted in (Watts) W.

A= surface area of heat flow in m>. (PCTPGndlcular to the

direction of heat flow)
dT = temperature dlffercnce between the faces of the slab in °C or g

dx= thickness of the slab in 7.

dT

Here dT is negative. Because dT'=T,—T;. (Change in temp)
Since T, is less than Ty, dT is negative. 2

So we get the equation



— (Tz - T1) (Tl - TZ)
d.x L dx

Here k= Constant of proportlonallty and is called therma
conductmty of the material.

(T; - Ty)
Rk dx
- @Xdx 0 W
0, k: — — = Q
A(T\-T) (AdT m* x °C T
dx "

So the unit of k is W/m°C (or) W/mK

1.3 THERMAL CONDUCTIVITY (k)

Thermal conductivity, ¥ of a material is defined as the heat

conducted through a body of unit area and unit thickness in unit time
with unit temperature difference.

1.3.1 Thermal conductivity of solids:

Solids are classified into 4 types

Metalic Alloys Non-Metalic Powder
solids solids and Porous
(Pure metals) _ solids

Thermal Resistance

The heat transfer process is analogous to the flow of electricity.

According to Ohm’s law,

Voltage difference (V)
Electrical resistance (R)

Current (H=



It can be rewritten as

TI_TZ--
Q="Tra

where ﬁ is called thermal resistance R,

L

So, Rrh - H

The reciprocal of thermal resistance is thermal conductance,
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r
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Fig. 18(@) " 1

R for different ﬁgures are given in page No: 44, 45, 46 and 47
of HMT data book by CPK




2. Convection

The heat transfer between a surface and the surrounding fluid
which are at different temperatures, is called convection heat transfer,
Convection heat transfer is defined as a process of heat transfer by the
combined action of heat conduction and mixing motion.

Consider a container full of water. Heat is conducted through
container wall. ‘

()  First of all, heat is transferred from hot surface of wall to adjacent
fluid purely by conduction,

(i)  Then, the hot fluid’s density decreases by increase in temperature.

This hot fluid particles move to top layer - low temperature region
and mix with cold fluid and thus transfer heat by mixing motion.

If the mixing motion of fluid particles takes p]acc due 'to density

difference caused by temperature difference, then this convection heat

transfer is called free convection (or) natural convection.

: ; s (oF

If the motion of fluid particles is due to fan (or) pump (0.)
blower (or) any external means, then this convection heat transfer is
called forced convection.

3. Radiation

Conduction and convection needs a medium for heat transfer, but
radiation heat transfer takes place even in vacuum.

Radiation heat transfer occurs when the hot body and cold body are
separated in space. The space may be filled up by a medium (or) vacuum.

Energy, emitted in the form of electromagnetic waves, by all
bodies due to their temperatures is called thermal radiation.



LENERAL DIFFERENTIAL EQUATION OF HEAT
CONDUCTION - CARTESIAN COORDINATES

Consider an infinitesimal rectangular element of sides dx, dy and
dz as shown in Fig. 1.9.

Q, = Rate of heat flow in x direction through the face ABCD

Qy + g = Rate of heat flow in x direction through the face EFGH

o
g, = Heat flux ( 71 in x direction through face ABCD
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Fig. 1.9 Elemental volume for three-dimensienal heat
conduction analysis - Cartesian coerdinates

Qctdx ). . .
Gy + ax = Heat flux T direction through face EFGH

kx, ky, kz = Thermal conductivities along x, y and z axes

QZ = Temperature gradient in x direction

dx



uation of conduction can be derived based g,

f energy (or) the firs
f thermodynamics_ to the control volume of

The differential eq
the law of conservation ©
Let us apply the first law 0

t law of Thermodynamieg

Fig. 1.9.
o - r T B 7
Quantity of Heal | Change in
heat conducted generated " Work done”
tothe from inner enthalpy by
elementary |+| heat source |= | element
volume in with in the of element W
face ABCD . element dh
0, A (L1)

The work done by an element is small and can be neglected ip

the above equation.

Hence, the above equation can be written as

dh
Qx+Qg=_Et_+Qx+dx

-(1.2)

Now let us see one by one.

Qx: Quantity of heat conducted to the elementary volume

The rate of heat flow in to the element in x direction through'
the face ABCD is '

" orT
0,=q,dy dz=—kx*—xdy.dz

B (4 B )

The rate of heat flow out of the element in x direction through
he face EFGH is ' , :

- ) e a ‘ H@D_
Oy v ax= Qx+gc'(Qx) dx %@E

oT
%—kx-;dwz%[_kﬁdm]dx
X .

oT 3 -
Q =—k, — - oT
i * xdy dz Bx[kx '_‘x ]dxdy dz

—

(14




Q= Cr s gy gives

T '
Q= Qe+ ay ==k, i} g OE Z
(x + dx) X o dy({z [ k, * Dk dy dz — - [ ]dxdydz]

aT
/a dy dz + k ——a‘y dz+a-[k.gz]a’xdydz

2 a"'r - )
=Q Q(1+dx)_5h[ D ]dxdydz ’

il 1:3)
s 0 '
Similarly Q), - Q(y +dy) = -é— k a—r{ dx dy dz
_ y| 7 dy ...(1.6)
ol or
Q.= Q(z +dy) = e k, 5—] dx dy dz :
z| 0z (LT)
Add (1.5) + (1.6) + (1.7)
Total heat conducted 9 3T
in all direction 31: ke 3y |dxdy dz+
o[ . or P oT
ay[k«"’ ay]dxdydz-!-a-z—[ 2 3z ]dxdydz
Total heat conducted into the element from all directions
d oT 3 aT d aT
K= = — |*+—| k. —
[a.—.. o |Toy| oy o zaaa] e
: s 1Y

£ ma

Change in enthalpy of the element (%)
We know that,

Change in 'Mass Specific Rise in
enthalpy ~ L oFthe . heat 4
of the element of the fmfmamm
element element gl eiement
oT
=Ji1 * C M —

a;_



oT
_(de\ d)' u)xc R ot

[ " Mass = DenSlty % VQ]
T | O
[ Change in enthalpy of } C,—dx
| the element P P ot dy dz

~(1g

Heat generated from inner heat source within the elemep 0,

Heat generated within the element is given by

Q.= dx dy dz y
L. 10
Substituting equatlon (1.8), (1.9) and (1.10) in equatiop (12)

o[ ar] o[, or T
1] k= o | |ax
EEIC ! H

oT |, 0 or | 0 aT e oT
ax[kxax] ay[kyay] az[kzaz] %P Gy

When the material is isotropic,
k = ky k, —k-— constant
82T 82T a2r] oT
=k +q,=p
9x? ay az

Divided by &,
22 2 20 :
0T 0T 9T dg PCpoT
ax* 9 9 k kot

A
L AL, BF i 10T
ox“ dy* 9z k oot L(11D)

v2r4de 19T

koo | R

"
It is a general three dimensional heat conductlon equation !

cartesian coordinates



" .
VAT —k& =0 (Poisson’s equation) -

Case (iii)
No heat generation, steady state conditions. Then the equation 1.11
becomes, '

V2T=0 (Laplace equation)

~~
e
—
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~



Refer Pg.

R =

__ 005
370 x 1

1.351 < 10~ % K/wW

AT T — T3 400 — 75

for formula.

R R 1.351 < 10— %4

g = 2405.63 kW/m”




A stainless steel plate 2 cm thick is maintained at a temperature of 550°C at one face and 50°C on the

other. The thermal conductivity of stainless steel at 300°C is 19.1 W/mK. Compute the heat transferred
through the material per unit area.

——

Tx)

L

Fig. Ex. 1.1

Solution
This is the case of a plane wall as shown in Fig. Ex. 1.1. Using Eqn. (1.12).

kA
Qx=rf(T0_ TL)

0 k (19.1)(550 — 50) | .,
or =g =—(H-T) =" 4775 KW/
A q, L( 0= 1) 2%107 kW /m

.
m CONVECTION

5 i £
For a fluid flowing at a mean temperature T,, over a surface at a temperatm];\

proposed the following heat convection equation: ) N%n
q=0Q/A=h(T,-T,)=hAT

Wwhere g is the heat flux at the wall. The Eqn. (1.14) is called Newtpn’§ law of cooling, The g ( 1.|4J
coefficient / has units W/m?°C or W/m? K when the heat flux ¢ is given in the units of Wiy tr;u1Sfel
g

temperature in °C. i
Free stream
Flow T.
U?
uy) .
1 Ts
//////////7//////////////{/////////////77
Wall

Fig. 1.5 Convection from a Heated Plate
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Q=cA [T -T}) (1.17)
The real surfaces, like a poltshed metal plate, do not radiate as much energy as a black body. The

fmmmes? oo mbecems a1 [ T Ty Annmimbad £a 1iAtmes n Faatae o 1 ?

gdy Hatuls Ul r€al suriaces can UG accounica 1or U_Y muuuuuus a lavivl &) lll Dqll. Li.
emissivity which relates radiation between gray and black bodies at the same temperature.

Q=0A§(N'-T;) (1.18)
To account for geometry and orientation of two black surfaces exchanging radiation Eqn. (1.17) is
modified to

Q=0AgF(T'-T;) (1.19)
where the factor F, called view factor, is dependent upon geometry of the two surfaces exchanging
radiation, see Planck (1959).

- Example 1.3

A Svadiatar? in a Aamactin heatine cuetem nnerateg at a enrface tamnearature nf §597 Matarmina tha rata

Example 1.3

A ‘radiator” in a domestic heating system operates at a surface temnerature of 55°C. Determine the ra

at which it emits _adaant heat per unit area if it behaves as a black body.

:-:S@iution




ﬂcomemsn MECHANISMS OF HEAT TRANSFER

It is not unusual to observe that the heat transfer is taking place due to two, or perhaps all three,
mechanisms. The most frequently encountered instance is one in which a solid wall (usually plane or
cylindrical) separates two convicting fluids, e.g., the tubes of a heat exchanger. As mentioned earlier, the
steam generating tubes of a boiler receive heat from the products of combustion by all three modes of
heat transfer.

The overall heat transfer by combined modes is usually expressed in terms of an overall conductance
or “overall heat transfer coefficient’ U, defined by the relation:

Q = UA (AT) | (1.27)

The overall heat transfer coefficient is a quantity such that the rate of heat flow through a configuration
is given by taking a product of U, the surface area and the overall temperature difference.

V’A
Fluid B
w Te.W 1 Ts
A KA ho A
Q) —=
M k 2
L S
T,
\/.L B

Eim 417 (warall Haat Tranefar thrnninh a Plana Wall with Reacictancra Analaow



In the case of a plane wall shown in Fig. 1.7 heated on one side by a hot fluid A and cooled on the
other side by a cold fluid B, the heat transfer rate is given by:

Q=wu—m=%m—m=wﬁ—fg>

from ﬁhich: = :
(8 "I ’llA
0 w
-1=2
A
Q
=l



Adding these equations we eliminate the unknown temperatures 7; and 7, to gjye the solu

heat flow as "
- - =T

. = (I/h,A) + (LIKA) + (1/h, A) (1

remembering that the value (1/h4) is used to represent the convection resistance ang (L/ka) 1
conduction resistance. In accordance with Eqn. (1.27), the overall heat transfer coefficient js:

1 1
U= -
Uh + Lk +1/h, AZR, (12

The overall coefficient depends upon the geometry of the separating wall, its thermal Properte;
and the convective coefficients at the two surfaces. The overall heat transfer coefficient is particululy
useful in the case of composite walls, such as in the design of structural walls for boilers, refrigerator;

air-conditioned buildings, etc. Use of overall heat transfer coefficient is also made of in the design of
heat exchangers.

te




Example 1.4

The inner surface of a combustion chamber wall receives heat from the products of combustion. The

wall is being cooled by a coolant on the outer side. Compute the overall heat transfer coefficient
draw the equivalent thermal circuit.

v
Qx Tg
Hot gas Ry T,
—A— WA
Tug A R Rie
. ')
I 0 ()
TG - L -_—
N —



Problem 1.2: A furnace wall is made up of three layers, one is fire
brick, one is insulating layer and one is red brick. The inner and outer

surfaces temperature are at 870°C and 40°C respectively. The respective
conductive heat transfer coefficients of the layers are 1.163, 0.14 and

0.872 W/m°C and the thicknesses are 22 cm, 7.5 cm and 11 c¢cm. Find
the rate of heat loss per sq. meter and the interface temperatures.

Solution
From Pg. 45-CPK-Data book

AT
C=%



Furnace
side




l

Thermal Resistance R

R for composite wall = 1 + L2 L3
. h kl b

A ky TR
Since we are not consrderlng convective heat transfer, We can
1- 1
ignore — and — (i.e., — =0 and — = Q)
h h,, h, hy,

Also' A = | m2

ky

L. L
SOR_E[kl }

_1[ 022 +0.075_"_ 0.11
B 1.163 * 0.14 " 0.872 .

=0.8510 K/W

— = — —_— — 5_3 W
Q. R 0.8510 0.8510 77

Q_0_
q= A 1—-9753W/m



Ly 0.22

Ri=7. 4.

=0.1892

870 T, =
075.3 X 0.1892 = 184.5

T,=870—184.5
=685:5° C
Tz — 685-5 ° C




Similarly,
=0 X R2
R by 0075 .- o v
3 kgAg 0.14 x 1 :
T2 - T3 — Q X R2 _

685.51 — T3 =975.3 X 0.5357
T5=685.51 — (975.3 X 0.5357)

| T3 - 163.03u C |




1.5 GENERAL DIFFERENTIAL EQUATION OFf HEAT
CONDUCTION - CYLINDRICAL CODRDlNATES
The heat conduction equation in cartesian coordinateg iy

for rectangular solids like slabs, cubes, etc. But for C-""Iindricalb Use

like rods and pipes, it is convenient to use cylindrical cqq sh

e,
rdlna i1
1.10 shows a cylindrical coordinate system for geners tes. py

TR

1 I
Condy, Uct;
equation. : Io
T
Qr
, S
|)\}' : G Q.:Hdn
" [t
Qr \B\ e
s Elemental
Qf -] f"',lDLM"'--.. fvolume
A .d"’ ﬂn“.‘\“
dz -“%Ji\
Q{ r + dr)
Fig 1.10
E
Q




Q.= Heat conducted to the elemeﬁt in the ‘r’

direction through left face A3 0

Q, = Heat generated with in the element

% = Change in ethalpy per unit time

Q. . 4 = Heat conducted out of the element in

direction through the right face EFGH















; osite walls with i
1.7.2 . Heat conduction through comp fluid on

e’ ) lmm
(with inside and outside convection) sig

A composite wall 1s composed of several different layers

having a different thermal conductivity. Consider a composite ’-Wail’

up of three parallel layers as shown in Figure 1.14(a). Mg

Since the rate of heat transfer through each layer (slab) js e
we have |

kyA(T)—Ty) kyA(T3—T73) k3 A(T3—-T))
L, L, R -

In most of the science and engineering applications
- on both sides of the composite walls.

:

...(1.3]
3 ﬂUId ﬂ(}w

Hence, we should consider convection on both sides. Then
:

kyA(Ty —T,) ' =
Q=h, A(T,—T,) =— (7 2)=k2“1(Tz 13)




Q
—E
T
T, LB P TR TR
T : R, Re .
Ty _ (b)
T T4 Th
k ka | x, [ h
—| X | "E —Q :
3 '-—-_.-...."'----.
Ly | L, L:!
(a) fluid
Fig. 1.14 (a) conduction throyugh, A Composite slab with
on both sides and (b €quivalent tharmpa;l resistance c'muli,/‘) )
8
(1.%°
Equation (1 38) can pe Written g )
9
1.3
Tt O (
Ta=1y) R, A= QR,



where, R,

or.

(T,

(T, -

(T,

and R, are the thermal resistance
Addmg Eqs from 1. 38 to 1.42, we get

Tb Q (R, +R1+R2+R3+Rb)

Loy —

Q=

QL,

— Ty = -
2) = ey QRl

7 0
T3) = El% = OR,
Q
I9= k3L3 . QR3
- Tb) — —_thA — QREJ

Tcz - Tb

R,+R, +R, + Ry +R,

...(1.40)
...(1.40)

..(1.41)

..(1.42)
of c_onvection.

...(1.43).



‘For n number of slabs, "y
T, — T,
n
R,+R,+ Y R;
i=1

- Q = Heat flow =

__ Overall temperature difference ATy

. Thermal resistance z R rtan
[Refer HMT Data book Page 45 for formula]
_ oo A(T,—Tp) B A(T,— Tp)
.?=(1+L1+£2—+L3+1} (L+l+iﬂ\
h, ki k; ky hy h, ' h, ;
- = J
=UA(T,~Tp) = . ...(1.45)

where [J = overall heat transfer coefficient



R,
47
(Refer page

and (b) the equiva

h,
g 18
K
et ——
L
g
3
R,

_AWA M—e

| “~ R, T.
NWA
T R

T k)
dﬂtﬂ.

(b)
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e

If the heat transfer by convection on the two sides of the composite wall is absent, e

D
hy| A o
—— C | E
Ts | B _F-_'Tb
H s Tq:

ﬂ '-'".-—
‘ Re | Ao
t-—uw' s
T 5
E

T

Fig. 3.6 Series and Parallel Composite Wall and its Thermal Circuit
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The eloticlanalogy method may bewsed o sove complex problems involving both series and

pallel themna resstances, Ope s ypical problem with s themel circut i shovn in Fig, 36,
Here
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Problem 1.2: A furnace wall is made up of three layers, one is fire
brick, one is insulating layer and one is red brick. The inner and outer

surfaces temperature are at 870°C and 40°C respectively. The respective
conductive heat transfer coefficients of the layers are 1.163, 0.14 and

0.872 W/m°C and the thicknesses are 22 cm, 7.5 cm and 11 cm. Find
the rate of heat loss per sq. meter and the interface temperatures.

Solution
From Pg. 45-CPK-Data book

AT
Q—_



!

4 \
Q—7 ¢
NN

k,=1.163 k,=0.14 k;=0.872 3
|
Thermal Resistance R
. 1| 1 i . P
C 11 = +
R for ompc:mte: wa =a ’: I k kz kB b}
Since we are not considering convective heat transfer, we ca

1 L 1
ignore — and T (1 =0 and — = Q)
Ila hﬂ hb

Also A =1 m



SoR—-—-[ Lz 1’3}

’Cz ks
0.22 0075 0
1163 " 014 T
= 0.8510 K/W
I ~-T, (870
Q= R =
_9_r
=4

For Interfac-
B
(T~



Ly . .022 L,
Ri=%A, 1.163x1 0.22m

= 0 1 892 s T;_. Tr
: T2=L!5.5°C

—Th=

g0 4 _ T, ¢ q7,=7
075.3 X 0.1892 = 184.5 T,= B70°C

T, = 870 —184.5 :

k,=1.163 k,=0.14
=685.5°C .
T, = 685.5°C
Similarly, |
=0 X RZ
R,=—2 _ 0075 _ 538,

27 kA, 0.14% 1
685.51 — T3 = 975.3 x 0.5357
T53=685.51 —(975.3 X 0.5357)

T5=163.03°C




Problem 1.3: A mmpﬂsrre wall is made af 15 mm thick of steel pla:‘e
lined inside with Silica brick-200 mm thick and on the outside magnesite
brick-250 mm thick. The inner and outer surface temperature are

750°C and 100°C respectively. The k for silica, steelplate and magnesite

brick are 8 _‘E_ 68 A and 20—\% respectively. Determine heat flux,

m°C  m°C
interface temperatures.

Solution

Heat ﬂux —*—g-—

From Pg 45 of CPK



| T,=750°C ) T, - T,=100%C
T - —
- (1) - (2) (3) |
Silica Brick Steel Magnesite
plate Brick
|
_ K=
ky=8 k,=68 | g~ &N
- 0.2m —10.015m -""-—— 0.25 —=
o [ Lz Ls 3 L q
' . | ' =VUand-._

1

AT, '
Q= | aniemﬂ

1702 . 0015 0257 _
= [ 3 + 8 + 20 ]—-0.03772wa




_ (&naveraﬂ |

0="%g
(T,-T) 750-100
=R 003772 _17232W
0=17232 W

To Find Interface Temperatures

To find T,

R ~qu1]
. T
A_kll [ A:]Illgf
1T 0. |
=T 9—5—}=0.025=KM

= 17232 % 0.025



T, =750— (17232 x 0.025) = 319.2°C

Tz =319.20C. 5

To find T -

L, 0015 4
=—= = =2205 X 10~ * K/W
&y Ak, 1x68

319.2 — T, = 17232 x 2.205 x 10”4

T;=319.2 - (17232 X 2.205 x 10" %) = =315.4°C

. |T3=315.4°C'l




Alternate Method : To find T,
' -1y

Qm}elﬂe2 )

17232 = —
0.025 +2.205 X 10

-

17232 (0.025 + 2.205 X 10_ %) =750 - T

T3 =750 — [ 17232(0.025 +2.205 x 10~ %) ]
=3154°C. |



To find. T,

1><20
Ly—-Ty
R2 +_R3‘

[R3 Lo —00125] .

g

T, - 100
| 2205><10 +00125
-~ 17232(2.205 10‘4+0 0125)=T,-100

17232 =

=i '
i .0125) +

= 319.19°C.




I-)I'ﬂblem 1 4. ﬂle Igr”pgrafure flforib”ﬂ'GJI thr*ough %
consisting of fire brick, block insulation and steel plate i 8iven "

L] L - : E
Determine heat flux, thermal .conductivity of block insulatio,, i lo,

plate, heat transfer _coefficient for_gas side and air side. Sleg

.

Solution
Note
: L
So . | : - _
' o L | Qconvection — haA (Ta Tl)
. i ] _ _n —
. T,=758°C T,=727°C _T3=68.5"C T,-68.45%
: : . —sps - -
j : |
| Fire Brick Block Insulator Steel
T =750°C ) i plate T =26I5u
> k=113 |k, . PO
Hot (1) I - R (3)
e | ' airside
side ka ;
63.5mm | _ 127mm _|6.35mm




—— e ———————————
Tg=TRe To=727 - Ty=685  T,=68.48
Fire Brick Block insiilator | Steel
T | plate
d
| T
Hot 4
gas 0.0635 0.127m 0.00635m
. side A —l-— _ . - =] airside
(1) e (3)
R, By R, . R, Ry -

where R for composite »wangl +

e ———— S —

1 .Ll

L,

A h(l kl

+—k2

.I..

A=1m?> (not given)

=
ks hb}



To find QO

R =—EL 00635 _  hs6o k/w
I A 9,13 %1 |
“Ty =T, 7581927 ' ”
- —& 0056 = 551.6535 W/m’
To find %k,
Q=T2“T3
- 727 — 68.
i B 7R68.5
2

R, =1.1937 K/'W

Ly

Rz = kAo




L 0.127

. -kz

_ _ =0.1064 W/, i
“RyA, 1.1937x1 o
 To find ki,
Q= R.
3 ! i
ss1 5 _ 685 —68.48
! B
R3=3.625x 1074
Ry = s
k3A3
Byt O00GES 175.15 W/m K.
- R3A3 36625 %10 i1 5.

So k3 = k for steel = 175.15 W/m K.



To find h,
- Qc‘gﬁnductinn = Qcﬁnvectiﬂn from gas side to fire brick

=551.65W
| -Qcoqvect'ign '__:_haA (Ta = -TI)

" 551.65 = hy X 1% (760 - 758)

» L 551.65
5
760 - 758
hy =275.83 Wiin?e(,
To find h, |

. anvecﬁm from -stee] plate to ajr — hy < A X (Ty—Tp) _

351.65 = 1, x 1 x (68.48 — 267

hy, =13.141 W/m*C.



=) W W e

two 6 mim thick glass sheets separate dby,
rnnm is-20°C and the ambient gy o n‘ﬂnn

giassand airto be 23.26 W/m? m’K. dEtEF'E'&! rE”-l

Neglect convection eff Ming
- unit area ﬂflhﬂ door. ECIS i ¢ "
lhe heat leaking nf0 i Kijass = = (.75 W/mK L 2 33;

'E:air = (.02 W/mK



Glass sheets



Solution,
Referring to Eq. (332)



-———""—-——:—-___-—-:-—-—‘-—-__—_ - — -
Problem 1.5: A composite wall is made of a 2.5 cm copper plate

(k=355 W/mK), a 3.2 mm layer of asbestos (k=0.110 W/mK) and a
5 cm layer of fiber plate (k=0.049 WimK). The wall is subjected to
an ._g;'verall temperature difference of 560°C on the Cu. plate side and
0°C on the fiber plate side. Estimate the heat flux through this composite

wall and_interface temperature between asbestos and fiber plate. (FAQ)

«Given: . , .
Thickness of- Cu plate © . Ly=25cm=0.025m
Thickness of asbestos L,=3.2mm=0.0032 m
Thickness of fiber plate L,=5cm=005m

‘Thermal conductivity of Cuy plate &y =355 W/mK
Thermal conductivity of asbestos k,=0.110 W/mK
Thermal conductivity of fiber plate k; =0.49 W/mK

Overall temperature difference, AT =560°C



From HMT DB page 44.

Heat flux
_Q_ s AT
34 R

560

20.025+00032+ 0.05
355 0.110 ' 0.049

=533.55Wim®

Qzﬂ‘%_%“ﬂ=ﬁ“ﬂ

4. L L,
ok

Interface temperature

Ty=544.43°C

53355“( 0.05 )

between

asbestos
Cu
Ts; wT
V
Tf?ﬁouc /T4= 0°C
/T ; /
2.5¢m |32 5cm
" Imm
'T3—0
0.049
and fiber

asbestos

plate



Problem ';1-9': A composite wall is made up of three layers 15 ¢cm, 10
cm and 12 cm of thickness. The first layer is made up of material with
k= .45 IW/m"C for 60% of area and rest of the material with

W
k=23 —oC The second layer is made with material of k=12.5 W/m°C

for 50% of the area and the rest of the material ~ with
r=185W/m°C. The third layer is of single material with
1=0.76 W/m°C. The composite slab is exposed to warm air at 26°C
and cold air of —20°C on the other side. The inner and outer heat

transfer coefficients are 15 Wlmz'ﬁ’C and 20 W/m?°C. Determine heat flux

rate and interface temperatures. - ‘ (FAQ)

Solution | R__ L | Rc g
| Req =-Equiv_alentR s ";}:& | -_ N P
- | B a. AT
Rl = l T 1 ,. CtJ o ﬁ & s T e
eq Ry Ky S



-

I
o
<
~

I

T_=-20°C

h =20




2 /q: . |
ime A=1m" (Since surface area is nOt_ given)

Assu
Refef Pg 47 of CPK - Data_book.
To find Ry
. L 0.15
e =0.17241 K
Ra= T A, ~ 145%06 KIw
L, 015 _ 0ISKW,

Ry = kA ~25%0.4

RRy 017241><015~ '
=0.08
Ry+R, 0172414015 -0k

Rl—

Ry= 0.080213 K/W.



Tofind Ry p _ fe _ . 01 _ .0 cpmny
| © kA, 125x%0.5 ; s

4 . | '
Ry=—2 2L ___401081 K/W
kA; 185x%05
= __RRa 0016 x0.01081 YN -
> R.,+R; 0016+0.01081
R, =6.4513x 10" K/W
To find R4
| x o
R T A T 076 o = 0-15789 K/W
Reor convection inner = K,; = : = A = 0.06667 K/'W
R R e
I i -,
Rfor convection outer — Rca = hoii =
| =
.= 1 i

20.% 1‘ = ‘[0.05 K/'W



To find @
R=R,;+R;+Ry+R3+R,,

= 0.06667 + 0.080213 + 6.4513 x 10~ a3

=0.36122 K/W.

I(.AT)overall = Ii ="
R .

>0
g

26— (-~

N




To find Interface Terﬁperatures
To find T,

* Qoonducted = Cconvectea under steady state condition.

@Hnlveﬁtinn = 127.345 = ;A (T; — Tl)- -.
127.345 = 15 X 1 X (26 — T)

oo {27345 -
26 — T; =——7=—=8.4896

T, =26 — 8.4896 = 17.51°C

T, =17.51°C.
To find T, :
0=
Ry
Ty =T, =QCR,

T,=T; — OR; |
T, = 17.51 — (127.345 x 0.080213) = 7.295°C

- |1y=7.295°C.|



3
q.) l
10
6. 5
7 x
f!l — .3
— 2
| 5
29
-
3

4737°C. |
=



TO find T4 5

Qconvected ~ 127.345 = hoA (T - 1))
127.345 =20 x 1 x (Ty — (=20))

T,+20= 12;'345. = 6.36725

l T =-13.6327°C , |




1.5 GENERAL DIFFERENTIAL EQUATION OF yp. B
CONDUCTION - CYLINDRICAL COORD)» -
The heat conduction equation in cartes
for rectangular solids like slabs, et
like rods and pipes, it ic
1.10 shows -
equat






O, = Heat conducted to the elemeﬂt in the 7’
direction through left face ABCD

Q, = Heat generated with in the element

% = Change in ethalpy per unit time

0O, . 4= Heat conducted out of the element in ‘7’

direction through the right face EFGH



By applying I law of thermodynamics,

dh
Crt Q=G * Orrar (1.17)
Qr=q,.A=—kA'a—Y:::k(r-d¢'dz)§I -
A Toa ;. OF Ty, .(1.18)
Where A = area of clement;r-dq)-dz A (Q;V
e e -:_r ! .
By

Qg=qg (dr-rd-dz) _ (1.19)
g 2= 0u= e (h.dgd3)ds
= mass of the element X s‘l))eciﬁc heat X change in -
= P'CP*& d“’a‘g .T?B?np‘gﬁtufe of the element in time dt
-9

dhy oT
—' =[pWdr-rd¢-d))]Xec. x—
dt P - | .(1.20)

Orsar=aq,A+ i(qrA) -d?"=—k4£+“a— —kAa—T dr
or r . or Or ar ..(1.21)



where

k = thermal conductivity of the material in the ;r— direction
AT/or = temperature gradient in the r — direction
g, = heat flux in the r — dircc_tion atr,
e at left face, i.e. at ABCD (W/mz)
q, = internal energy generated per unit time and per unit volume

W/m’

- : " 3 ‘ :
p = density of the material (kg/m~) | le+ Q% ~ d‘ﬂ
/

it
(9T/0r) dr = change in temperature through distance dr A
- Substituting Eqgs. (1.18), (1.9), (1.20) and (1.21) in Eq. (1.17) we get

oT oT of 0 oT
- kA — Adr = Adr—- —t— —
kAar+q3 r=pec, rar kAar+ar[kAar)dr:|

© Pindacy



A T,

L(d(b dr- dz)—a-(?‘gz}"f] (r-dg-de:dr)=p-c,r.q,.,
|

a 'I
e ’ 2 1 . . d¢%£
A oT |
k| Pt | —
h’a, ar Gg7=P cpra:
) :
#1197, 40_Peyor
o Tror| k ko
l._?_. ri{l .+c—13-=pcp aT
ror| or | k kot
: 1, - | 7 1 (122)




L] ---.:_.J

Equation (1 22) is the one-dimensional cylindrical coordma[e
time-dependent equation for heat conduction’ with ’ mternal heat £eneratigp

This Equatlon (1.22) can be reduced to dlfferent cases as follows |

Case 1: Steady state, one-dimensiohal heat transfer with internal heat generatioy |

L g (ra—T]+££=0

r ar ar k __.(1.22 (H):] ;
Case 2: Steady state, one- dlmensional, without internal E}eat generation r
1 0( OT L |
——| r— |=0 I i
r or or . .(1.22 (b)) |
Case 3: Unsteady state, one-dimensional‘, ‘without heat generation -

19 aT ___@I : -
ror| "or |T o or ..(1.22() |
The three dimensional general heat conduction equation in |

cylindrical coordinates is given as

°T 19T 13T 32r| q, -1 or
1 g _1
l: 92 ror r 9¢> Y a2 | T x " r - ..(1.22(9)




1.8 HEAT CONDUCTION THROUGH A HOLLOW CYLINDI
. 'Figure 1.16 shows a long hollow cylfndﬂr made of 'NDEH;
having constant thermal conductivity and insulated at both a materia|
inner and outer radii are r; and r,, respectively. The IEhg‘::ds.fT:e.
| ' . of the

cylinder is L.

: (a)
Q —--—1;1—“-1'2_ —= 0
'R : Fig 1.16

_ ' (b)

Fig. 1.16 (a) Conduction through a hollow cylinder without
) inside and outside the cylinder
(b) Equivalent thermal resistance circuit
=T - eeetime in evlindrical Cmrdinates 1S

fluid flowing




{D] tql-“vi’lﬂlll RISl BEERAE o= —

equation in cylindrical coordinates 18

The general heat conduction

~ given by

yr 107 19T T % 0T
e S b= -
32 T or . oy’ 92 koot (1.49)
Assum;itiuns: .
Steady state: _Ei_'i_'_'z
ot

No heat generation: qg=0



azT I g c
_+lﬂ=0;li(r£)=0

LA AT ]
k5 dr(;dr]—(),mncer;eq

Integrating Eq. (1.50) twice we get

r'-‘E—C or dr _Ci
dr.:iidpes o
.T=lnrcl_+ C2

~where C; and C, are arbitrary constants

(150)

% Rh 1)



indary conditions

At r-—rz,T T2

J.’

| Substltutmg these bounclary conditions in Eq. (1 51) o -
: 7 -ﬂfw "??f
T,=lnr C, +c2 o G '

Tz—lnr2C1+CZ

ﬂ

Solving the abt!);e %wo equations, we have

hy— sz

rl r.
In — In =
Iy r

Clz

Substituting C; and C, in Eq. (1.51), we get



| Tz"TI 5l
T=Inr ""“;;‘ I = (T,
| In— '
| N
"2
In—
Ty
In —
T"‘Tl _ rl
=T p 12
. o

(1)

Equation (1.52) gives the temperature dlStI‘lbuthﬂ in a holly
cylinder. The heat flow rate through the cylinder over the surface arey

A is given by Fourler s conduction equatmn

TFF I



dT
dr

Substituting dT/dr from_ Eq. (1.51) into the above equation

Q= - kA when (r *—_-"rl_)

.(Whﬁnr'—r’ﬁ}
(T~T K2nr L(T,—T
\ Q—_kA( 2 - I)X 1 _ 1 ( I 2) ?_ o
; = ~ o -
iy W AL %
rl . - i‘l

=— Bk o _- "_(133) [A'=2ﬂrL]

or Q= =__Ti-Tz 3 s

L\2'.ltIcL)

i = T, | : ' ; b
Ry Thermal resistance for conduction heat transfer



9. HEAT CONDUCTION THROUGH COMPOSITE
(COAXIAL) CYLINDERS WITH CONVECTION

Consider the rate of heat transfer through .a composite cylmder as

yown in Figure 1.17 (a) and its equivalent thermal resistance in Figure
17 ()

Surrounding
Fluid

i 5
_ Ta T T, Ts Ty

O —ifi— : ) Q =
(b) R, R, R, Rp

Fig. 1.17 (a) Conduction through a composite cylinder with fluid flowing
inside and outside the cylinder I
(b) Equivalent thermal resistance circuit



Ty, T, Ty = Temperatule at inlet surface, betwecn first ap

second cylinders and outer surfar~
L = Length of the cylind="

hy hp = Conve~"

| T T, = Temperaturc of the fluid ﬂowmg inside and
outside the composite cylinder

ky, ky = Thermal conductivity of the first and
sccond material, respectively

The rate of heat transfer is given by Eq. (1.53)

i ky 2 L(T; —
Q ha2ﬂr1L(Ta*T1)= 1 l ( 1 2)

ky2nL (T~ T3)

I ry #h52ﬂr3L(T3_Tb)
o] _

2 e Tl Te +(1.53)



'Anangmg Eq (1.55), we get 3

(T, ~T)) = —2 -Q'XR;I

hz'nL

i - Q
T, - Ty =
| _( 1P k2nL

3 &4 Zn (ry/ry)

SR IR ¢
(z 3),k22L QXRZ

lﬂ (r3/r2) o

@y-1)=—L __oxRr,

- Adding Egs. from_l.SG to 1.59, we get

(Ty—~Tp) = Q’(Rﬂl +R;+R, + Ry) |

...(1.56)
k1)

(1.58)

(159

(160



[ 5 y .
In —= In—=
=Q : d iy d
\ HZRLrl ky2n L LkQZ‘n: hb2‘n:Lr3) (1.61)
(Ta - Tb) _ZEL |

o Q.z 1 ~ In rofry Inryfry G
—— - + + Rty




9.1 Summary - Cﬁmpnsite Cyliﬁdér'

r = radius.in m
L= length, m

Fig. 1.18

Refer from Pg 46 of HMT Data book - CPK.

1 1. 1 1 T2 1 rs3 1 rq 1
R= +—1In| =2 |+=—mIn| = |+ 1In| = |+3—
z-nL[harl ky ["1]' k> -[”z k3 r3 hy ry
___(ﬁnovcrall |
R

T; or T, = Inner temperature; T, or T, = Outer temperature

]



]

Problem 1.11: A steel tube of 5.08 cm _ID and 7.62 cm OpD

with o cht . thick of

[kpoe) = 4326 W/m°K ; Kyspestos 0.208 W/m®C.  The ' insige
S . ¥ )

receives heat from hot g§ases at 316°C with heat transfer coeffi

: Cieny
' urface is exposed to ai o .
284 W/m?2°C whereas outer s Sface Pose air at 38°C with J,

2 ; .
transfer coefficient of 17 W/m*“C. Determine (1) heat loss Tes

length. (FA

:_-"-hh‘_-‘
IS cove,
a.s*beﬂ

Sy Ffe

Solution

k asbestos = 0.208

k steel =43.26

h, =284




1 L ) ry) 1
R= t—In| = |+=Im| =2 |+
ZRL':IIEFI kl n[rl }‘sz IH{FEJ hﬂ?.'-:;]

__1 1 P (0.0381
2mX3| 284 x0.0254 @ 43.26 ! 0.0254
\ 1
1 0.0631 +__,__-a--[}
0208 ™ | 0.0381 :| 17x006

- =0.05305 [0.1386 + 9.37 x 10~ + 2.426 + 0.9322]
= 0.18599 K/W

o= AD)gveran 316 H 38
R ~ 0.18599

-0 =1494.665 W

=1494.665 W.



oblem 1.12: A steel tube of 50 mm ID and 80 mm OD is lcovered
30 mm thick of asbestos. The thermal canducnvuy of steel, asbestos
45 W/mK, 0.2 W/mK. The tube receives heat from hot gases at:

0.025 m
=0.04 m :
=0.07 m B ite
=T, =30°C

=15 W/m?°C

= 300 W/m?°C
'=400°C




E 1| 1 il el 1.
In +—In|—= |+—
21l I harl kl [ r ] ](2 ) hbr3

B o 1 40 70 1
S In +—1 +
2n><1{300><0025 45 (25] 02"( ] 15><007]

© -1 138041=06197K/W

(AT)veratt . Ta= T _ (400 - 30)
~— R R 0.6197

=59TW




| To find Interfacc temperatures
To find Ty | -
0= haA (T, - Tl) 300 % (2‘”‘”1 x L) (400 — Tl)

597=47.12(400 - 1)

a 597
T1—4OQ (47 12)

=387.331°C

Ty= 387.33°C. |

Rl'- - | | E Cn o .

_ 1 11,1 1 - '1'__ | 40 ey |




- 38733-T,.
. Q= = 597
. . 66229>< 1073

597 x 1.66229_% 10- 3= (387.33 - T))
T, =387.33 — (597 x 1.6.6_22!'9 x 107 ) ='386.345c
| T,=38634°C. ©
To find T, o gl
Q = MyA fTs =Ty 2
597 = 1‘5'><'(2nr3,L) (T; - 30)
597 = 15 % (21 % 0.07 x 1) (T3 -30)
(T3 - 30) 90 49

T3 =90.49 + 30 — - 120. 491°C
T3=120491°C. °



5=

*;&Problem 113 A steel wmbe of 5 cm ID 7.6 .cm OD and
k,- 15 W/mK is covered with an msu!armn of thickness 2 c¢cm and

thermaf Cﬂﬂd”ﬂfw”}’ 0.2 W/mK. A hot gas ‘at 330°C and
}; — 400 W/m K flows inside the tube. The outer s'urface of the insulation

g;"f;s expos‘ed to cold air at 30°C with h=60 W/m2.K. Assuming a ‘tube
igengbrh of 10 m, find the heat loss from ‘the tube to the air. Also find,
"I‘jil'-_‘fucruss which _layer the largest temperature drop occurs. (FAQ)

'_{:'?:-ﬁleen




r =2.5 cm=0.025m, k; =15 WimK -
ry=3.8 cm= 0.038 m, k, ~02 w;mk .
r,= 0038 +0.02=0058m_ |
| Inéide tﬂﬁlperaturé, T; =_.'330°C
' =400 W/m*K
Outside temperature, Ty =30°C
hy =60 W/m’K

Tube length, L=10m
- Heat loss from tube tt?'air (v DB pg - . '



2w L [T;—7¢l
.Q= 1 In (ryp/71) & In (r3/13) M
- h"“1+ ky k_z hors
2 1t %X 10 (300)

——————

= In (0.038/0.025) _ In (0.058/0.038) 1
- % - = + s
400 x 0.025 LS5t 0. 60 x 0.058
18849.56 = 745177 W

T 0.1+ 0.0279 + 2.114 + 0.287

To find largest temperature drop |
2ML(Ty—T,) 27L(T,—T5)
" In (ro/11) In (r3/r))
k, | %

2T X 10X AT,

7451.77 =~ — 5038 = AT; =33°C
0.025 :
| 2T X 10XAT,
T451.77 =.

I (0.058/0.088). - - 1g— 230370

0.2 .

Largest temperature drop occurs in oufer layer.



Transient Heat Conduction



Solid

E .=0Q

out COMms

S

Fig. 6.1. Solid suddenly exposed to convection
environment at T _

The 1nitial temperature of sohid T. (Fig. 6.1) 1s
oreater than ambient fluid temperature, T_, the
eqn. (6.1) leads to,



When the heat energy is being added or removed to or
from a body, its energy content (internal energy)
changes, resulting into change in its temperature at each
point within the body over the time. During this
transient period, the temperature becomes function of
time as well as direction in the body. The conduction

occurred during this period is called transient (unsteady
state) conduction. Therefore, in unsteady state

T=Ax1)
= Function of direction and time

During transient heat conduction, the energy
balance on a body yields to

The net rate of heat transfer with the body

= Net rate of internal energy
change of the body.



6.1.1. Systems with Negligible Internal Resistance :
Lumped System Analysis

If the physical size of the body i1s very small, the
temperature gradient exists in the body i1s negligible.
The small body can be assumed at uniform temperature
throughout at any time. The analysis of the unsteady
heat transfer with negligible temperature gradients is
called the lumped system analysis.

Consider a solid of volume V, surface area A,
thermal conductivity %, density p, specific heat C and
mitially at uniform temperature T. 1s suddenly
immersed in a well stirred fluid, kept at uniform
temperature T . The heat is dissipated by convection into
a fluid from its surface, with convection coefficient /.



In absence of any temperature gradient in solid, or
the energy balance for element is :

The rate of heat flow out the solid through the
boundary surface(s)

= The rate of decrease of internal

energy of the solid

' or
or RA(T-T )=-mC % .{8.1)
where, m = pV, mass of the body
and T = fit), a function of time. or

i) [ hA_t
— EXp 4 —

Ti = Tm pVC




Solid

E .=0Q

out COMms

S

Fig. 6.1. Solid suddenly exposed to convection
environment at T _

The 1nitial temperature of sohid T. (Fig. 6.1) 1s
oreater than ambient fluid temperature, T_, the
eqn. (6.1) leads to,



ho
Bi= i Biot number, a dimensionless

number.

ot
a_g:.

number.

Fo =

Fourier number, a dimensionless

A . s
GF = {; , Geometrical factor, a dimensionless

quantity.



The geometrical factor GF is considered to be
unity for calculation of characteristic length 6 of the solid
as

o
A

]

o =

...(6.9)

Then the temperature distribution eqn. (6.3)
within the solid can be expressed as

T-T. = ex .— t (6.10)
T-T - p 5C ..(6.10

For certain common body shapes, and their

rharartemstie lanoth A 12 cshoawn 1m Tahle A 1



Biot Number

It 15 defined as ratio of internal resistance of the
solid to heat flow to convection resistance at the surfaces.

B Internal resistance to heat flow
1 : ) ¥
Convection resistance to heat flow

P L (616

RA 1k
It can also be interpreted as the ratio of heat
transfer coefficient to the internal specific conductance
of the solid. The Biot number is required to determme
the validity of the lumped heat capacity approach. The

lumped system analysis can only be applied when
Bi<0.1

Thas eriteria indicates that the internal resistance
of the solid to heat flow is very small in comparison to
convection resistance to heat flow at the surfaces.

Fourier Number

[t signifies the degree of penetration of heating
or cooling effect through the solid. It 1s defined as the
ratio of the rate of heat conduction to the rate of the
thermal energy storage in the solid. It is denoted by Fo
and expressed as

CBAATIS  RA k t o

T OVOATE pASCS pC 3 32
(6.17)
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Example 5.2

A 40 x 40 cm copper slab 5 m
temperature lowered at 30°C. Fin
p = 9000 kg/m®, ¢ =0.38 kI/kgK, k= 370 W/mK and 2 =9

m thick at a uniform temperature of 250°C suddenly pqg "
d the time at which the slab temperature become SUtfyg,
0 W/m’K. S 90eg,

Solution
A=2x%0.4x04=032m" (two sides)
V =04 x0.4x0.005=8x10""m’

C

L=Y-1-25x10"m

hL,  (90) (2.5x107°)
B=—== =6.1x107* < 0.
% 370 07 <0.1
Using Eqn. (5.5),
- hA ) _ (90) (0.32)
cV B ) 4 — 0-0105
pe (9000) (380) (8 x 107*)
s W ol ¢
' = exp| —
I- T, I;[ [ pcV ]t]
M'z 00105t
250 — 30
-6£ — 6—0.01051‘
220
el 367 = 60'6_105! ‘

Hence £=12383 5.

Narmcaa . =~



4 Example 5.3
A stainless steel rod of outer diameter [cmo

a liquid at 120°C for which the convective heat frans
required for the rod to reach a temperaire of 200°C.

riginally at 3 temperature 0f 320°C1s Suddenly imn i
for coefficientis 100 WK Det ermmeth[ I
I

Solution
hL
=

&
ok



———— e

Taking 1 metre length of wire

T T
V = ZD2 L= 2(0'01)2 =7.854 %107 m?

A =7mDL = 7(0.01) x1 = 0.0314 m>

D _ (0.0D
4 4

L =

C

=25x%x10"3

For stainless steel, take p = 7800 kg/m?, ¢ = 460 J/kg K, k =40 W/mK

hL -3
Since B="m_ (100) (2.5 x1073)
k 40
the lumped capacity analysis is applicable. It follows that:

A —T, hA
— =exp| — -t
1o — T, pcV
Here T = 200°C
T, =320°C

T. = 120°C

hA _ 4h _  4x100
pcV — pcD 7800 x 460 x 0.01

=_6.25><10_3 << 0.1,

= 0.01115/s

200 - 120 - 80 - 3_0_011151'-
320 — 120 200

.01115¢
or ; 2_5=e+00

Hence t =82.18s.



An aluminium sphere Weighing 5.5 kg ang imitially at a temperature of 290°C s suddenly immersed in
a fluid at 13°C. The convective heat transter coefficient is 58 W/m*K Est

. ' imate the time required to
cool the aluminium to 95°C, using the lumped capacity method of analysis. s

Solution
Taking the properties of aluminium as (from Appendix A-])

p=2100 kg/m
¢=9007AkgK
k=205 WinK

V :iym% it = ) =2037x10°
3 p 2100




R = (3V/4m)'" = 0.0786 m

L= _gi =(0.0262 m

Using Eqn. (5.4)

We have

T =95°C
T_=15°C A
Ty =290°C

;o hA _ 3h _ 3% 58 20 1x10%s

| pcV  pcR 2700 %900 x 0.0786

il = 20 =exp(-9.1x107*7)
29015, 275
or . - 3.4375 = exp(9.1 x10¢) —

Hence t=1357s. «—f/\ Y



Example 6.1. In a quenching process, a copper plate of
3 mm thick is heated upto 350°C and then suddenly, it
is dropped into a water bath at 25°C. Calculate the time
required for the plate to reach the temperature of 50°C.
The heat transfer coefficient on the surface of the plate is
28 W/ m? K. The plate dimensions may be taken as length
40 em and width 30 em.

Also calculate the time required for infinite long
plate to cool to 50°C. Other parameters remain same.

Take the properties of copper as
C=380.J/kg. K, p=8800kg/m?
k=385 W/mK (J.N.T.U., May 2004)
Solution
Given : The quenching of a copper plate in water

bath.

Size =40 ecm x 30 em, L =3 mm,
T, = 350°C, . =250



T. = 3507, T =25,
T = 50°C, h =28 Wm2.K,
C =380 J/kg.K, p = 8800 kg/m?,

k=385 Wm.K.

0 o =
/ Water

S
T T_=25°C
—
E E=350C | h=28 meE.K
=, "

o
Fig. 6.8. Schematic of plate in example 6.1



To find : Time required to cool the plate to 50°C, if
(i) Finite long plate size 40 cm x 30 cm,

(z7) Infinite long plate.

Assumptions :

1. The effect of edges of plate for cooling.

2. Internal temperature gradients are negligible.
3. No radiation heat exchange.

4. Constant properties.

Analysis : (i) The characteristic length of finite
long plate (as shown in Fig. 6.8)

Volume of plate

0=

Exposed area of plate
| 0.4 x 0.3 x 0.003

2x04+2x03)x0003+2x0.3x04
474 x 103 m

T
= 1



o ‘ -3
Bi = ho B 28 x1.474 x 10 = 1072 x 104
k 385

which 1s much smaller than 0.1, thus the lumped system

analysis can be applied with reasonable accuracy. Using
eqn. (6.10) :

R . T R
R =ip. | p0s
Using numerical values.

50 — 25

= exp 5
350 — 25 8800 x 380 x 1.474 x 10

or

88{}{} % 380 x1.474 x 1073 (

x In
28

=451.5 s =7.52 min. Ans.

3 LAy
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(i) Characteristic length of infinite long plate
eqn. (6.11)

d=—=00015m

m|r'

o 28 x0.0015

B=—=
E -k 385
which 1s much less than 0.1, therefore, using lumped
system analysis.

-109x107*

50-25 _ | 28t '
350-25 | 8800x380x00015

or t=4595 s =7.60 min. Ans.




Example 6.2. A solid steel ball 5 ecm in diameter and
initially at 450°C is quenched in a controlled
environment at 90°C with convection coefficient of
115 W/m?.K. Determine the time taken by centre to reach
a temperature of 150°C. Take thermophysical properties
as

C=420J/kg. K, p=38000*kg/m?

k=46 Wim.K. (P.U., May 2002)



Solution
Given : A solid steel ball quenching with

=150 = B
T. = 450°C, h =115 Wm?2K,
C =420 J/kg K, p = 8000 kg/m?,
k=46 Wm.K, D=5cm=005m.
— —
D=5cm
| Steel ball ”

Fig. 6.9. Schematic for example 6.2

To find : Time required by steel ball to reach 150°C.



To find : Time required by steel ball to reach 150°C.
Assumptions :
1. Internal temperature gradients are negligible.
2. No radiation heat exchange.
3. Constant properties.
Analysis : The characteristic length of the steel ball
~V _D 005 _ [0.05)
0= =—= m = m
A, 6 6 6
The Biot number
hS _ (115 Wm*K) [ 0.05

=" =
k (46 Wm.K) 6

which is less than 0.1, hence the lumped heat capacity
system analysis may be applied.

111} = 0.0208



Using eqn. (6.10) for temperature distribution

T_T .
=111 € o
T.~T 03C

Substituting the values

50-90 P 8000 % 0.05 x 420
or In (60/360) = - (690/168000)¢
or t =440.35 s =7.34 min. Ans.

150 - 90 { 115 x 6¢ }
D



Example 6.3. A titanium alloy blade of an axial
compressor for which k = 25 Wim.K, p = 4500 kg/m? and
C=520J/kg Kisinitially at 60°C. The effective thickness
of the blade is 10 mm and it is exposed to gas stream at
600°C, the blade experiences a heat transfer coefficient
of 500 W/m?.K. Use low Biot number approximation to
estimate the temperature of blade after 1, 5, 20 and 100 s.

(N.M.U., May 2002)

Solution
Given : A titanium alloy blade of compressor with

k=25 Wm.K, p = 4500 kg/m?,
C = 520 J/kg K, h = 500 W/m?2K,



T. = 60™C, T _=600"C,
L =10 mm, i =1.5. 20 and 100D =s.

To find : Temperature attained by compressor
blade after 1, 5, 20 and 100 seconds.

Assumptions: 1. Compressor blade as an infinite
wall.

2. Negligible internal temperature gradient
3. No. radiation heat exchange.

4. Constant properties.

Analysis : The characteristic length of blade

L 10

The Biot number

hd  500x5x 107
Bi=1_=.JDDx.Jx1{} 01
R 25




il T
Hence it is possible to use the low Biot number
approximation

T-1T. = exp | — At
T;' - Tm pSC
After 1s
T -600 ( 500 x 1 ]
=exp | — =
60 — 600 A5 hx W™ x ol
or T =600 + (- 540) x exp (— 0.0427)

= 600 — 540 x 0.9581 = 82.6°C. Ans.

similarly the temperature after

t T
DS 163.9°C
20 s 370.3°C

100 s 592.5°C. Ans.



Heisler Charts



Centre Temp. Chart—Infinite Plate—Temperature—Time History at Mid Plane
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Location Temp. Chart Infintie Plate—Temperature—Time History at any Position
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{X sl.ab of alu;mmum _10 cm thick is originally in a temperature of 500°C. It is suddenly immersed in a
liquid at 1190 Cr ZSUltmg In a heat transfer coefficient of 1200 W/m”K. Determine the temperature at
the ceng'e ine an the surface 1 minute _after the immersion. Also calculate the total thermal energy
removed per unit area of the slab during this period. The properties of aluminium for the given conditions
are

T = S007C -

o=84x10"m?/s; k=215W/mK ;
T‘__Q T‘OGC.

p=2700kg/m®;  c=09ki/kgK.

Solution '
The Heisler charts of Figs 5.7 to 5.9 may be used for solving this problem.

2L=10cm, L=5cm, f=1min=60s

Here
-5
ot _ (8.4x10 g (60) ~2016
2 (0.05) j
1 k 215

B, WL (1200) (0.05)
From Fig. 5.7 the centre line temperature is given by

Ton—1- _ O _oes
T,—-T. 6 ~
6, =Ty, — T.. = 0.68(500 —100) = 272

=272 + 100 = 372°C

or . | Too.1)
For the temperature at the surface
¥ =10

_l-:=



From Fig. 5.8 at x/L = 1.0 and for A&/hL = 3.583

Ton=Te _ 1880

Ton—Ts .
T, = (0.88) (372 — 100) + 100 = 339.36°C

To calculate the energy loss
hrot _ (1200)% (8.4 x 107°) (60)

- =0.157
k> (215)
p= L _ (1200 005 _ .
k 215
From Fig. 5.9, '
—U— =0.32
Uy
] U cV(T,-T :
For unit area 7 1: £ (/‘; =) _ PcRL) (T, - T.)

= (2700) (900) (0.1) (400) = 97.2 x 10 J/m?
Heat removed per unit surface area is

U
- = .0.32 X97.2x10°=31.1x10° J/m?



Example 6.9: A slab of thickness 15 cm mitially af 30°C 15 exposed on one side to gases af
600°C with a convective heat transfer coefficient of 65Wim"K. The other side 1s insulated. Using
the following property values determine the temperatures at both surfaces and the centre plane
after 20 minutes, density: 3550 hg/m?, sp. heat = 586 JIkgK, conductivity = 19.5 WimK. Also
caleulate the heat flow upto the time into the solid.

Solution: The data 1 presented in Fig. 6.13(a). The slab model with the centre plane at zero

and thickness 0.15m 15 used. Asinside1s msulated this can be considered as half slab with
1 =0 at insulated face.



The quantities Bi and Fo are calculated using

65%0.15
B':
SREETY:

o

=0.5,

Fo X 20% 60/0.15% 0.15=0.5

~ 3550 X 586

The procedure of obtaining temperature 1s illustrated with skeleton charts in Fig. 6.13
(b) and (c). The centre temperature 1s obtained by entering the chart as shown in Fig. 6.13 (b).
The excess temperature ratio at the centre 1s obtained as 0.864.



Insulated

N S W

0= 3550 kg/m"
¢ = 586 Jikg K
k = 19.5 W/imK

30°C

B W N

«— 015m —>»

Fig. 6.13 (a) Model.

TG,T i
)

T, - 600

30 -600

i

=]

0.864

65 Wim K

600°C

Tﬂ.

T,,— T, | Read 4
T.-T, |0.864 Bi=05
Enter
A
0.5
Fo
Fig. 6.13 (b)

= ().864, after 20 minutes

107.52°C



To obtain the surface and mid plane temperatures, the location chart 1s entered at

Bi = 0.5 as schematically shown 1n Fig. 6.13 (c) and the values at x/L =1 and 0.5 are read as
0.792 and 0.948.

The surface temperature 1s given by

TLT B Tm
’ = 0,792 % 0.864
T; o Tn:-c-
T. . —600
o = (.6843
30 - 600

. Surface temperature T; = 210°C

The mid plane temperature:
T .-600

36 - 600
T=133.13°C

=().864 x 0.948



The heat flow 15 determined using the heat flow chart as shown schematically in Fig.
6.13(d). First the parameter 1s calculated:

104
A Bi=05
]
0.948 44\_
e ‘J\ ¥/L
K 05 Q |, 032
I:]'D
1!1:-::- 1 1[] i
>
05 Bih 0.125 hszkz
Fig. 6.13 (c) Fig. 6.13 (d)

Kot 65x65%19.5 %20 %60
S e & TR
k 3550 % 568 x19.5



Entermng the chart at this point and finding the meeting of point with B = 0.5, the ratio
Q/Q 13 read as 0.33.

Q=033 % 3350 x 586  0.15 x 1(600 - 30)
=55.39 x 10° J/m’

A rough check can be made by using an average temperature increase and finding the

change 1n Internal energy. The average temperature rise 1s (107.52 + 210 + 133.13)/3 - 30 =
120.22°C.

Q=3350x 0.15 x 586 x 120.22 = 37.51 x 10°

This 15 of the same order of magnitude and hence checks.
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CONVECTION



The process of heat transfer hetween a surface and a fluid flowing In contact
with it 1s called convection, If the flow 15 caused by an external device ke a punp or

blower, 1t 13 termed as forced convection, It the flow s caused by the huoyant forees gencrated
by heating or coolme of the fhuad the process 1s called as natural or free convection.

In the previous chapters the heat fhux by convection was determimed using equation
g=h{I-T) A1)

qisthe heat flux in Wi, T isthe surfce temperature.and T_ 1 theflud tempenature of the
fre¢ stream, the umt being °Cor K. Hence the unit of convective heat transter cosfficient 125 W/
m* K or Wi °C hoth heing 1dentically the same.



CLASSIFICATION OF CONVECTION

The convection heat transfer 1s classified as natural (or
free) or forced convection, depending on how the fluid
motion is initiated. The natural or free convection 1is a

process, in which the fluid motion results from heat
transfer. When a fluid is heated or cooled, 1ts density
changes and the buoyancy effects produce a natural
circulation in the affected region, which causes itself
the rise of warmer fluid and the fall of colder fluid :
Therefore, energy transfers from hotter region to colder
region and such process is repeated as long as the
temperature difference in the fluid exists.



In the forced convection, the fluid 1s forced to flow
over a surface or in a duct by external means such as a
pump or a fan. A large number of heat transfer
applications utilize forced convection, because the heat
transfer rate is much faster than that in free convection.
Air
—

20°C
— -

5m/s
— -

Heated
plate at 70°C

AAEAAATATATATATASAEATARARARAEUARERURRRRARY

(a) Forced convection

—h_




Warmm
air rising

L S -~ Heated
- 1"‘;

(b) Natural convection

Stagnant Q No convection
air current
Heated
plate

AL SRR AR TR AR UAEAS SRR KRR AR SR AN

(c) In absence of fluid motion, heat transfer in the
fluid is by conduction only

Fig. 7.1. The heat transfer from a hot surface
to the surrounding fluid



Velocity Boundary Layer

Consider the flow of fluid over a flat plate as shown in
Fig. 7.5. The fluid approaches the plate in x direction
with a uniform velocity u_. The fluid particles in the
fluid layer adjacent to the surface get zero velocity. This
motionless layer acts to retard the motion of particles
in the adjoining fluid layer as a result of friction between
the particles of these two adjoining fluid layers at two
different velocities. This fluid layer then acts to retard
the motion of particles of next fluid layer and so on,
until a distance vy = 0 from the surface reaches, where
these effects become negligible and the fluid velocity u
reaches the free stream velocity u_. As a result of
frictional effects between the fluid layers, the local
fluid velocity u will vary fromx =0,y =0 toy = 0.



Y A =
Velocity
Boundary
— layer
L Velocity profile
: u(x, y)

Fig. 7.5. Velocity boundary layer on a flat plate

The region of the flow over the surface bounded
by o in which the effects of viscous shearing forces caused
by fluid viscosity are observed, is called the velocity
boundary layer or hydrodynamic boundary layer
or simply the boundary layer. The thickness of

boundary layer 0 is generally defined as a distance from
the surface at which local velocity u = 0.99 of free stream
velocity u_.



1.9.1. Laminar Boundary Layer

The velocity boundary layer starts at the leading edge

of the plate as a lamiar boundary layer, in which the
fluid motion 1s highly ordered and it is possible to identify

the stream limes along which particles move. The fluid
motion along a stream line is characterized by the
velocity components u and v in both x and y directions

and 1t influences the momentum and energy transfer
through the boundary layer. The velocity profile in

laminar boundary layer 1s approximately parabolic.



1.5.2. Turbulent Boundary Layer

The flmid motion in the turbulent boundary layer has
very large disturbances and 1s characterized by velocity

1

fluctuations. T
and heat transfer. Due to flud mixing, the turbulent

he fluctuations mnerease the momentum

houndary layer thickness 1s larger and velocity profiles
are flatter with the sharp drop near the surface.



Laminar boundary , Transition  Turbulent boundary

e layer _jlg region ,lg layer Turbulent
Boundary u,  layer
layer u(x,y) |, =

i’thickness \ : g ‘3
E‘;(I = 4 e

r ﬂ ;
. g

- : I':'J{:":} Buffer :

- Pa h{_”a X+  Boundary layer ;‘Eg”;
N layer thickness y

Fig. 7.8. Boundary layer concept for flow along a flat plate



jrat 20°C 15 IOWINE 210N & heated flaf e, 134°C gt

; lncity of 3 m/s, The late is 2 m long and
ide. Calculate the thickness of g, h ol P 5

1tf; o s the leadmg edge of the tle undary layer and the skin friction coefficient

a

rnth The kinematic viscosity of air at 20°C may be taken at
107 m’.
15,00
Solution
) X =40 cm; Re =E= () (04)
t X

T = 19x10 < 5x10°
. oV 1506x10°
go the boundary layer is laminar, [ts thickness is calcylateg from Eqn, (7.13),

* ()04 ; o\
S== =0.71x10%m =17,
JRe, (19x10%)"2 X107 m=1.1mm

The local skin friction coefficient s givep by Eqn, (

7.14) it
06 , g ]
Cﬁ=—i‘f= Oéﬁi 7 =236x100 -
| JRe, (1910



For the flow system in Example 7.1 calculate the local that transfer coefficient at x = 0.4 m and the heat
transferred from the first 40 cm of the plate.

Solution

34420 0,

The film temperature, T =

The physical properties of air at 77°C are
- p=0998 kg/’, C,= 1009 KIkg’C,v=2076x10" ml

k =003 WK, Pr=0697

x=04m

pe oo 00D gy
oy 2076x10







The average value of the heat transfer coefficient is twice this value or

j1=(2) (53)=106 Whn'K
The heat flow 1
0=hA(T,-T.)
= (10.6) (04) (1)) (134-20)=T23 W
The heat flow from the both sides of the plate = (2) (725) = 1450 W.
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Solution

The film temperature, T, = %(Tj +T,)

250+78

2
The physical properties of air at (437 K, p = | atm) are

p=308x 100 m?hs, k=364x10" Wik,
Pr=0.69
C,=1018 kikg"C
The properties of air such as , # and P. do not change much with pressure buf the density "
A

does change a lot. Using the perfect gas equation
0= pIRT,

=164°C=437K




" L] ] [ ¥ . 'l}
the kinematic viscosity, y = £ wil vary with pressures as — = = (at constant temperature)

p o P

Hence the kinematic viscosity of air at 437 K and p =8 kN/m”* would be

5
=30.8x10'6x"0133>‘:0 =3.90%x 10~ m*/s
8§x10
for the given plate
Wl OB _josx10t

Re, = —
Yy 39x10™

Hence the flow is laminar over the entire length of the plate.
Using Eqn. (7.40)

h = 2hx=0.662(%]ﬁel'f P



(0662) 364 107) (205 10°)" x (049)"
()

, 1 8 3.04 W/mjl(
Since the plate has two surfaces from which heat is to be removed, the rate of heat removal

0=10A(T,-T)
= QB0 () 03)(250-T8)=3137 W.



s :
jot Imte 0 mvideand LOm long s g

l 0
,‘xl: e C and 80 m/s TESpectively, Ty

L]

'\m‘ulen[ «iththe help of turbulizing 2rid plageq Ups
b e at the trailing edge of fhe plate,
it on the surface of the plas,

fluon o
fehsica propetis of ar at 10°C gpe

k=005 Wik - :
K, V=X, progm

L (80) 1

Rey=——=_ '
= 14.15><1{]‘6=5'63X106>MOS




Due to turbulizing grid, the flow on, the plate becomes

v S0 over the entire plate, The turhylent boundary |
om Eqn. (7.54)

turbulent right from it leading edge and
ayer atthe trailing edge = I, can be calculated

5 (0381)
§=0381 LR < 80 (ﬁ)m
(2.69x10°)"

The mean value of the Nusselt number i given by Eqp, (7.60)
Nu 1=0037Re,” py'®

=00170m =170 e

=(0.037) (5.65x10°* (072" = 8363



h=Nu, - % = 369 1{0'025) =209 W/m’K,

Example 7.7
Anair stream at 0°C is flowing along a heated plate at 90°C at a speed of 75 mys. The plage gy
Wy

and 60 cm wide, Assuming the transition of boundary layer to take place at Re, =5 16
average values of friction coefficient and heat transfer coefficient for the full langth of the PlaTmM
calculate the rate of energy dissipation from the plate, e

Solution

Film temperature, I;= i’%tq =45°C,

The properties of air at 45°C are
k=28x10"WmK, v=1745x10%m*s, Pr=0698



eke — 5%10°
y

Now Re, .=

2
X.= (X10) (74510 2 0.116m=116cm

(75)




So laminar flow exists up to a length of 11.6 cm and the turbulent flow thereaiey

Rey= 208 g
(17.45x107)
The average value of the friction coefficient is given by Eqn. (7.59) as
— 0074 1740
by B -
(ReL) Re;
T 4 x10% - 09
(L93x10°y"  1.93x10
=319x10°

The average heat transfer coefficient can be calculated from Ean. (7.58) as



N, = (0037Re;" - 870) Pr”
=/ (0037) (.93 x10%*°- 870 0.698)"
= 2732 '

. v 172
i ngsxm = 10 Wik

The e of 'energ'y- dissipation from the plate,
e (170) (045) (06) (90) = 8262 W =8.262 KW



Assuming that & man can be represented by a cylinder 30 cm in diameter and | 7, high i

PC, ol e et e vold s e sding g -
emperature of 30°C, caloulatethe heat e would lose whil standing n 36 ki yiog e
Solution

0+10
The film temperature, T, = ——=90°C A
P f ) {1 7 7}

The physical properties of air at 20°C e
E=25910 WhiK. v=1500x10"mk: Pr=0707

The speed of wind = AR =10 mfs

3000



-2
R, <10 (06010

v 1500%107

Employing Eqn. (7.65) ;

- LT
Niy====Clley' (") ‘

where C'= 0,027 and n = 0.805 (from Table 7. 2)
The Nusselt number is then

Nup = (0.027) (2 x 10°)% (0.707)38 = 4447



=Ry D Q39x107)

g .
i =183 Wi’k
D (0xI0?) '

The rate of hea Jost by the man = 4 (TS'; )

=)0 I0b17) (0- 10)= 1202



-

.|1 4
L

y p|e7 JCi movingat 0.3 m/sacrossa 100 W electric bulb at 127°C. Ifthe bulb is approimated

Esﬁfﬂmm fiameter sphere, estimate the heat transfer rate knd the percentage of power lost due to
60 N

E;niﬂf“”n /

' 127+27

—=T1°C
g nperatt =

il .
i properes of ar at T7°C are
The P ;
p=208x10" m¥s, k=003 WmK, Pr=0697
D (03)(60%107) 2%
Rey=—= = 8653 y 7
T 0 -

w2 S ibon Kvswaalb siasaabos o



Equation (7.69) gives the Nusselt number as

N p=0.37 Reg‘ﬁ = h—D

k

-k -
h=—(037) (Re,)™

D

0.03) (0.37) (865.3)"°
Sl 00)6( ) 107 Wik

The heat transfer rate is given by

0=hA(T,-T.)

(10.7)(x) (0.06) (127 = 27) = 12.10 W



The percentage of heat lost by forced convection is therefore

=@x100 =12.10%.

100



Dimensional Analysis

Dimensional analysis is used to interpolate the
experimental laboratory results (prototype models) to full
scale system.

Two criteria must be fulfilled to perform such an
objective:

= Dimensional similarity, in which all dimensions of the prototype
to full scale system must be in the same ratio.

= Dynamic similarity, in which relevant dimensionless groups are
the same between prototype model and full scale system.
The convective heat transfer coefficient is a function of
the thermal properties of the fluid, the geometric
configuration, flow velocities, and driving forces.



* Dimensional analysis is a mathematical method
which makes use of the study of the dimensions
for solving several engineering problems.

* This method can be applied to all types of fluid
resistances, heat flow problems and many other
problems in fluid mechanics and
thermodynamics.

* |n dimensional analysis, the various physical
guantities used in fluid phenomenon can be
expressed in terms of fundamental quantities.
These fundamental quantities are mass (M),
length (L), time (T), and temperature (0 or t)



Simi]ar]}r

For example

Force (F) = (Mass) (Acceleration)
F=(M)(L/¢)=mu

Viscosity = (Shear stress)/{ du/dy)
= {Force/area)/( Velocityflength)

parJie)

(L)L)

—




Mass

Length

Time

Velocity
Acceleration

Force

Work

Energy heat

Power

Density

Pressure, Stress
Viscosity

Kinematic viscosity
‘Specific heat
Thermal conductivity
Thermal. diffusivity
Heat Transfer coefficient

Coefficient of thermal
Expansion

Table 6.1 Some Physical Quantitics and their Dimensions

m

T ™S Qs
=

M=
Q

'-QR‘Q?:-Q

M
L
t




Buckingham s 7 Theorom: This thearem i used as a rul of thumb for determiy mgthel .
independeﬁ dnnensmnless aroups fhat can be obtained from a set of variable By ind r“
dimensionless groups we mean thase groups out of a et whih cannot be deived by gy biniy
of the groups in any manner, whatsoever,

Buckingham’s 7 theorem states that the number of independent dimensionless 210008ty
formed from a set of n variables having r basic dimensions i (n - r)

For example, et 4.4, Ay, Ay A and A, be the relevant variables i 2 problem gng el
Vriables be expressed in terms of four basic dimensions, (M, L, T, ). The number of iy epend

dimensionless groups representing his phenomenon would then, according f 0 Buckinghans
b 6-4=2. The elationship betveen these imensionless groups can be expressed s

g I

e

il



| rocedure for obtaining the dimens; Fl( i 7r2) . - (6.96
16 10nles )

.n thz foﬁowing <ubsections. S groups for forced and free convection will be outline:
[

50.1 pirsensional Analysis Applied to Forced Convection

Let us NOW consider the case of a fluid flowin

acros : . .
sroblem along with their symbols and d g S a heated tube. The various variables pertinent tc

s mensions are given in Table 6.2.

Table 6.2 Pertinent Variables in Forced Convection Heat Transfer

Variable

. Dimension -

Tube dlam-etcoar B )

(Characteristic length)

Fluid density 0 i 1
Fluid velocity U L
Fluid viscosity 0 N ;
Specific heat C (242! |
P |
Thermal conductivity k ML
Heat transfer coefficient h M ’
N —— i




——

There are seven variables and four basic dimensions, so three independent dimensionless parameter:
would be required to correlate the experimental data,

The three dimensionless groups will be symbolised by 7, 7, and 7; and may be obtained by a se
procedure. Each dimensionless parameter will be formed by combining a core group of  variables witt
one of the remaining variables not in the core. The core will include any four (in this case) of the
variables which among them, include all of the basic dimensions. We may, arbitrarily choost
D, p, it and k as the core. The groups to be formed are now represented as the following 7 groups

m=D%p" 4 ¥ U
m=D"p’ u* k' C,

7[3: Dj pl ‘um kn h
Since these groups are to be dimensionless, so the variables are raised to certain exponents
a,b,c,...,m, n. Starting with 7;, we write dimensionally as

b ¢ d
M7 =1=(L)" MY M) (ML) (L
- v gi\L)lér )l

i E%ating the sum of the exponents of each basic dimension to zero, we get the following set o
-tquations

For. - 3% ¥ _‘.-M;_0=b+c+.d ”
' L 0=a-3b+d+l-¢
,*ft

 0=-c-3d-1
iy 0=



Solving these equations, we get

d=10
¢c=-1
h=1
a=l
Vi )
gving = -’{3-[-’;!— = Re,, (Reynolds number)
f
Similarly for 7,
(MY (MY (ML( 2
=5 | = || 5= || =
Blli)\rr ) ler
for M; 0=f+g+]
L, 0=e-3f-g+i+2
t; O0=—pg=-3i-2
. 0=-1-1



from these we find that j = ~1,g=1,f=0,e=0, giving

C
= 'UT = Pr (Prandtl Number)
By following a similar procedure, we can obtain
hD

my= i = Nu (Nusselt Number)

We may now express Eqn. (6.96)
| F(m,m,m)as
Nu=g(Re, Pr) o7
[t 15 worthwhile to point out here that we chose the core variables quite arbitrarily. Had we ches:

adifferent core group in our dimensional analysis, viz., D P 1, C, the 7 group obtained woudis:

been Re, Pr and a non-dimensional form of heat transfer coefﬁcunt which is designated as iz
number St, and is expressed as



Nu h

RePr puC,
S0 another form of correlating heat transfer data is |
St=¢(Re, Pr) v

I : e i
Dimensional analyss has thus shown us a way t0 reduce the seven significan vrab® o

. g ! il
convection to three dimensionless parameters, We must now have experimental datain ordertoe®
the functional relationship among these parameters

St




A 30cm long glass plate is hung vertically in the air at 27°C while its temperature i
Calculate the boundary layer thickness at the trailing edge of the plate.

Ifa similar plate is placed in a wind tunnel and air is blown over it at a velocity of 4 mjs, esfimgg
boundary layer thickness at its trailing edge.

Antaine gy,

l
Solution
Film temperature T, = (77 + 27)/2 = 52°C

The properties of air at 52°C are; k = 28.15x 10™ W/mK

v=1841x10"°m’fs, Pr=07, f=307% 107 K"

() Free Convection

v/

R (1841x107)?

=12x10°

o - 8PE-T, )L (981) 3.07x10%) (77 - 27) (0.3)
1=



leigh nber, Ra,= Gy Pr=84x10

* ueoftie Rayleigh number, according to Eqn, (8.42), indicates a laminar boundary layer

ig\ o '
ﬂ:ck psof e poundary layer atthe traiing edge is obtained from Eqn. (8.35) by putting = 0.3

Thﬁth _ 103 py R h
§,= 39 P (0952 + Py 61y

=0339307™ 09524 02" 210%™
=00152m=152cm



Jl*'.“{n{'-.'r { Ii '_-'?‘.'11\?:'-5”1'-
# HL b
|I|I.|

ow with 1, =4 mis |
L ()03

Re,=—== =6,51x10
oy 8410

For air ﬂ

o e boundary layer s laminar. The boundary layer thickness at the trailing edge s given by Eqn,
W

5=_-'——)"~—)——00{]58 0.58
J}E 6SIXI0 cm = 3.8 mm

Thus the boundary layer thickness in forced convection is less than that in free convection.
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Boiling and Condensation



Boiling Heat Transfer Phenomenon

* Boiling is a liquid to vapor change process just
like evaporation.

* Boiling is a phenomenon that occurs at a solid-
liquid interface when a liquid is brought in
contact with a surface maintained at a
temperature sufficiently above the saturation
temperature of the liquid.

* As the heat is conducted to the liquid vapor
interface, bubbles are created by the
expansion of entrapped gas or vapor at small
cavities in the surface.




* The bubbles grow to a certain size, depending
on the surface tension at the liquid-vapor
interface and temperature and pressure.

* Boiling heat transfer is heat transferred by the
boiling of water.

 HeatTransfer,Q=h(T.-T.,)

where T, is the saturation temperature of the

liquid. ﬂ/ﬂ‘m

Water
Boiling J Q0P
- %

T

Heating




Classification of Boiling

Pool Boiling

Flow Boiling

Sub cooled Boiling
Saturated Boiling



* Pool Boiling:

v'Boiling is called pool boiling when bulk fluid
motion is absence.

v Fluid motion is due to natural convection and
bubble-induced mixing.

* Flow Boiling:

v’ Boiling in the presence of bulk fluid motion is
called flow boiling (Forced Convection Boiling).

v’ Fluid motion is induced by external means such
as pump, as well as by bubble-induced mixing.




Sub cooled Boiling:

**When the temperature of the liquid is below
the saturation temperature.

**The term sub cooling refers to a liquid existing
at a temperature below its normal boiling
point.

Saturated Boiling:

*When the temperature of the liquid is equal
to the saturation temperature.

» Sub cooled and saturated boiling can exist in
both nucleate and film boiling.




Pool éﬂliil‘_lg_
« Boiling 1s called pool
boiling 1in the absence
of bulk fluid flow.

 Any motion of the fluid
1s due to natural
convection currents and
the motion of the

bubbles
under the

mmfluence |

of buovancy. u I
: - oy
EEXGEE

Heating




Flow Boiling

= Boiling 1s called flow
boiling 1n the presence

of bulk fluid flow.

 In flow boiling. the fluid
1s forced to move 1n a
heated pipe 1
O OVEer a
surface by
external

means such
as a pump. 1_

f——————
| —————
| -——
| o——
o
| -——
i
-+
oo —

L

Heatung



Subcooled Boiling Saturated Boiling

» When the temperature =~ * When the temperature
of the main body of the of the liquud 1s equal to

liquid 15 below the the saturation
safuration temperature. temperature.
P=1atm P=1atm

Saturated 100°C
| waler

HIHHBKHEIIHIH

Heating Heating




The Boiling Curve

* |n a typical boiling curve, four different boiling
regimes are observed: natural convection
boiling, nucleate boiling, transition boiling,
and film boiling depending on the excess
temperature ATexcess=Ts-Tsat.



Natural convection Nucleate Transition Film
botling boiling botling botling

¢ 100°C
e
| |
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Natural Convection Boiling (to Point A)

» Liquid is slightly superheated in this case (a
metastable condition) and evaporates when it
rises to the free surface.

» Liquid motion is due to natural convection.
»|In region 1 called free convection zone ,the
excess temperature is very small.

» Here the liguid near the surface is super
heated slightly, the convection currents
circulate the liquid and evaporation takes place
at the liquid surface.



Nucleate Boiling (between Points A and C)
Bubbles start forming at point A and increases
number of nucleation sites as we move towards
point C.

‘Region A—B — isolated bubbles are formed and
heat flux rise sharply with increasing ATexcess.
This region is the beginning of nucleate boliling.
‘Region B-C — Increasing number of nucleation
sites causes bubble interactions and coalescence
into jets and column. Heat flux increases

at lower rate and maximum at point C. The
maximum heat flux known as critical heat flux
occurs at point C.



* Critical Heat Flux - CHF, (ATe =309C) —
Maximum attainable heat flux in nucleate
boiling.

"' ~1MW/m for water at atmospheric
pressure.

* Point C on the boiling curve is also called
the burnout point, and the heat flux at this
point the burnout heat flux.



Transition Boiling(between Points C and D)
\When ATexcess increases past point C, heat
flux decreases because a large fraction of the
heater surface is covered by a vapor film,
which acts as an insulation.

*The transition boiling regime, which is also
called the unstable film boiling regime.



Film Boiling (beyond Point D)

‘At point D, where the heat flux reaches
a minimum is called the Leidenfrost point.
Heat transfer is by conduction and radiation
across the vapor Dblanket, therefore, heat
transfer rate increases with increasing excess
temperature.

The Leidenfrost effect is a physical
phenomenon in which a liquid, close to a
surface that is significantly hotter than the
liquid's boiling point.



* The phenomenon of stable film boiling can be
observed when a drop of water falls on a red
hot stove. The drop does not evaporate

immediately but moves a few times on the
stove.



Condensation

* The process of condensation is the reverse of
boiling.

* Condensation occurs when the temperature

of a vapor is reduced below its saturation
temperature.

Two forms of condensation:
 — Film condensation,

 — Drop wise condensation.



Film condensation

The condensate wets the
surface and forms a ligquid

film.

The surface 1s blanketed bywy
a liguid filim which serves
as a resistance to heat
transfer.

20C

Lagud falon



* Film wise condensation generally occurs on
clean uncontaminated surfaces.

* |n this type of condensation the film covering
the entire surface grows in thickness as it
moves down the surface by gravity.

* There exists a thermal gradient in the film and
so it acts as a resistance to heat transfer.



* Re;=d,pV /(W)

* d,=Hydraulic diameter
 p=density of liquid

* V =average velocity of flow
* L =viscosity of fluid



Re =0

Laminar
(wave-free)

Re =30
«—— Laminar
(wavy)

Re = 1800
< Turbulent



Dropwise condensation
The condensed vapor forms
droplets on the surface.

The droplets slide down
when they reach a certain

s1Ze.

No liquid film to resist heat

transfer.

As a result, heat Er_,:,,c.,t:/
transfer rates that L9

are more than 10
times larger than with

film condensation //)
can be achieved. Droplets




* |[n drop wise condensation the vapur
condenses into small liquid droplets of various
sizes which fall down the surface in a random

fashion.

* Alarge portion of the plate is directly exposed
to the vapor, making heat transfer rates much
larger than those in film condensation (5 to 10

times).



Y apor

Drops




Drop wise condensation is achieved by-

Adding a promoting chemical into the
vapor (wax, fatty acid),

Treating the surface with a promoter chemical,

Coating the surface with a polymer such as
teflon or a noble metal such as Au, Ag, Rh, Pd, Pt



Comparison between film condensation and
dropwise condensation

1. In film condensation, the 1. In dropwise
condensate  wets the condensation, the
surface and forms a condensed vapour
liquid film on the surface forms countless
that slides down under droplets of varying
the influence of gravity. diameters on the

surface instead of a
continuous film.

Z. Relatively less heat- 2. Higher heat-transfer
transfer coefficients are coefficients (about
associated with  film 5.10 times greater
condensation. than those in film

condensation) can
be achieved.




forms a film (layer) on
the  surface  which
imposes  some  extra
thermal resistance.

3. On a rusty or etched 3.  With a polished
plate, the wvapour is surface, the
condensed in a condensate is
continuous film over the formed in drops
entire wall which rapidly grow

in size (up to 3 mm
in diameter) and roll
down the surface.,

4,  The condensate itself 4.  Droplets provide

very little thermal
resistance.
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HEAT EXCHANGERS



HEAT EXCHANGERS

A heat exchanger is a system used to transfer heat
oetween two or more fluids.

Heat exchangers are used in both cooling and
neating processes.

The fluids may be separated by a solid wall to
prevent mixing or they may be in direct contact.

They are widely used in space

heating, refrigeration, air conditioning, power
stations, chemical plants, petrochemical

plants, petroleum refineries, natural-gas processing,
and sewage treatment.




Shell and Tube; Plate Type;



Shell and Tube HE

HEAT EXCHANGER [

|
=ilir— o
NS ._..___ =L

tube-side
fluid

shell side

| H Inlet
i?iibhelbl_tilnsfo She"'3|de nlanim




One pass shell and tube HE







Two pass HE




ERaied] “YYEnALL AEAl TRHANSFER COEFFICIENI

The thermal design of a heat exchanger involves the calculation of the necessary surface area required

to transfer heat at a given rate for given flow rates and fluid temperat_ures. The concept of overal] heat
great significance in the heat exchanger calculations_

transfer coefficient, U/, introduced in Section 1.9, is of

As defined in Eqn. (1.27)
' £12.1)

Q = UAAT,,

is an average effective temperature difference for the entire heat exchanger.

where AT,,
o

hj

(b)

Fig. 12.5 Heat Exchanger Walls: (a) Cylindrical, (b) Plane

Recall from Eqn. (1.29) that the overall heat transfer coefficient is defined in terms of the total
resistance. For the common configurations, plane and cylindrical walls of Fig. 12.5, this coefficientis of

the form
1
11: U = 122
S Y 1/h, + L/k + 1/h, b2
L 1 p
Cylindrical wall: bl = (12.3)
1 r, r, r 1
— +-2In| -2 [4+]| = |
lla k ( r ] [ ¥ J ]1.-
= - (12.4)

or Ur 1
’; r, v 1
;K [r;- ] [r,, ]ho :

where 7 and o represent the inside and outside surfaces of the wall, respectively.
Since the surface areas for heat transfer on the inner and outer surfaces are not the same, so we have
two overall coefficients as defined above. However, for the sake of compatibility ;



12.1
prample .
water heated to 80°C flows through a 2.54 ¢cm 1.D. and 2.88 cm O.D. steel (k = 50 W/mK) tube. The

1be is expOSed to an environment which is known to provide an average convection coefficient of

 =30800 w/m>K on the out side of the tube. The water velocity is 50 cm/s. Calculate the overall

heat ransfer coefficient, based on the outer area of the pipe.

Solution
The properties of water at the bulk temperature of 80°C are

p=974kg/m’, v=0364x10°m?/s
k = 668.7x10° W/mK, Pr=220
The Reynolds number is

UD _ (0.50) (0.0254)
Y 0.364 %107

Accordingly, the flow is turbulent and the convective coefficient may be calculated from Eqn. (7.108)
Nup, = 0.023 Re;) Pr
= (0.023) (34890)** (2.20)*
=.185.19

Hence h,= Nuy, L3
: D

Re, = = 34890

i

-3
_(13579) (668.7X107) _ 3o76 wim?
(0.0254)




h, (given) = 30800 W/m'K
The overall heat transfer coefficient may now be computed by Eqn. (12.3)

]

1 00144 . (288 (288 ) 1
¥ In|— |+
(30800) 30 254 | | 2.54 )\ 3575

=2591.9 Wim’K.



BEXH FouLING FACTORS

Equation (12.2) through Eqn. (12.4) are, in fact, valid only for clean surfaces. However, it is a wel-
known fact that\the surfaces of a heat exchanger do not remain clean after it has been in use for some
time. The surfaces become fouled with scalings or deposits which are formed due to impurities in the
fluid, chemical reaction between the fluid and the wall material, rust formation, etc. The effect of these
deposits is felt in terms of greatly increased surface resistance affecting the value of U. This effect is

taken care of by introducing an additional thermal resistance called the fouling resistance Ry R; must

be determined experimentally by testing the heat exchanger in both clean and dirty conditions, being
defined by

—

1 g, !
Ufoul U

(12.6)

clean

Denoting the fouling resistance by R and R, at the inner and outer surfaces, respectively, Eqns.
(12.3) and (12.4) stand modified to

By . (12.7)
_+Rfri1nr_0+,r1Rf‘+r_o_1_
by  TkoAxn)\n)" \n)h

and ' U=

(12.8)

Some typical values of Ry are given in Table 12.2



Detemmine the overal heattrensfer coeffcient U/, based on the outer surface of 2,54 ¢m 0.0, 2286
LD. heat exchanger tube (k =102 W/mK), if the heat transfer coefficients at the inside and outside f



2
ube ar¢ = 5500 W/m“K and h, = 3800 W fm’K respectively and the fouling factors are

the ,
_ Rf-: 00002 m” k/W

f,

golution

g EAn (12.7), the overall heat transfer coefficient based on the outside area of the tube becomes

1

i)k

1
0.0127) (2. 4) (2

L4000 )m(254)+(0.0002)(2—54— t 254)( : )

3800 102 \2286 “12286) 1286 {5000

= 1110 W/m*K.




mLMTD METHOD OF HEAT EXCHANGER ANALYSIS

Thethermal analysis of any heat exchanger involves variables like inlet and outlet fluid temperatures, the
oerll heat transer coefficient, total surface area for heat transfer and the total heat transfer rate. Since
e hot huid is transferring a part of its energy to the cold fluid, there will be an increase in enthalpy of
e cold fluid and a corresponding decrease in enthalpy of the hot flid, This may be expressed as

Q = mh G (Th,i_ Th,o) “291
ind Q:mccc(Tc,o_Tc,i) (12.10)
Where 71 = mass flow rate

¢ = constant pressure specific heat

The subscripts ¢ and h indicate the cold and hot fluids, whereas the subscripts i and o refer to the
idinlet and outlet condtions, respectively.
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I we denote the temperature difference between the hot and cold fluids by
AT=T-1. 121y
since AT is varying with position in the heat e.xchanger, the actual rate equation for heat ransfer bé
Eqn. (12.1)
| 0 =UAAT, (1)

where AT is a suitable mean temperafure difference across the heat exchanger. This average or meay

n

value must be determined before use can be made of Eqn. (12.1). We shall now present a method for th
determination of the mean temperature difference. Since the final expression obtained by this mefho
will be in the form of a logarithmic relation, tis method is referred to as Logarithmic Mean Temperatire

Difference (LMTD) method of analysis
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If we denote the temperature difference between the hot and cold fluids by
AT:Th_Tc | (1211

since AT is varying with position in the heat e.xchanger, the actual rate equation for heat rangfe )
Eqn. (12.1)

0 =UAAT, (121

““I,‘

where AT is a suiable mean temperature difference across the heat exchanger. This average or meay

m

value must be determined before use can be made of Eqn. (12.1). We shall now present a method forth
defermination of the mean temperature difference. Since the final expression obtained by this mefho
will be in the form of a logarithmic relation, this method is referred o as Logarihmic Mean Temperatre

Difference (LMTD) method of analysis



12.5.1 Parallel Flow Heat Exchanger

Let us first consider a parallel flow heat exchanger as depicted in Fig. 12.6. Assuming that:

Hot fluid
7F R
Cold fluid — =% Cold fluid
Tor — = == — %,
Hot fluid
Th, fo)
T |
Th, i _F_
T
1 Th, o
ATy AT | AT2
-
!/,—p—’— c, o
Foe
Te,i —
1 X
" 2
x=0 x=1L

Fig. 12.6 Temperature Distribution for a Parallel Flow Heat Exchanger
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. 0= anan) )

where AT,=T,,-T,; (from Fig. 12.6) (12.18)
ATZ - Th,o - Tc,o

On comparing this result with Bqn. (12.1), we see that the appropriate average temperature difference
is & log mean temperature difference.

LMTD, AT,,,. So we may write
0 =UAAT, (12.19)

where AT, = AT,- 47,
In (AT,/AT))

or AT}H‘I = AT] _ AT2
In (AT, /AT,




1252 Counter Flow Heat Exchanger

A counter flow heat exchanger, where the fluids, move in parallel but opposite directions, s showp i
Fig. 12.7. The change in temperature difference befween the two fluids is greatest at the enfrance of
parallel flow heat exchanger but it may not be so in a counter flow arrangement.

The analysis of a counter flow heat exchanger can be done exactly in the same manner s outlineg
in the previous section for a parallel flow exchanger. Eqns. (12.1), (12.9) and (12.10) are, in fact, vali
for any heat exchanger. By taking a differential area element for a counter flow exchanger (Fig 12
and proceeding as before it can be easily shown that Eqns. (12.19) and (12.20) are valid in this case too

AT - AT
Hence C Q=UAAT =A—— (1221
- In (AT /AT,)
where ATl = Th,i B Tc, 0
ATZ = Th,o B Tc,i



Referring to Fig. 12.7
AT)=T,,-T, ,=80-43.8=36.2

Using Eqn. (12.17)

where

FUNUANMEN I ALD Ur ENGINCECERINQG NCA T ANU.MA

c,0

AT,=T, - T, ;=50~-25=25
0= pa AT= AT
In (AT,/AT,)

[l

10000
—— |(2095)(80—-50) = 174583.33 W
0= (S0 2

. w2
0 In(AT,/AT,) 17458333 (362
U AT, - AT 300 (25-362)

A

=19.23 m?.



Example 12.4

Hot oil with a capacity rate of 2500 W/K flows through a double pipe heat exchanger. It enters at 360°¢
and leaves at 300°C. Cold fluid enters at 30°C and leaves at 200°C. If the overall heat transfer coefficient

is 800 W/m?K, determine the heat exchanger area required for
(a) parallel flow and (b) counter flow.

Solution
The heat transfer from the oil is

Q = C, AT = 25000360 — 300) = 150kW
(a) The temperature distribution in a parallel flow heat exchanger is as shown in Fig. 12.6. The LMTD
is given by Eqn. (12.20).

" In (AT,/AT,)
for which AT =T, ;- 71,: =360 - 30 = 330°C

AT, =T, ,- T, ,=300 - 200 = 100°C
330 -100
AT, = =192.64°C b
" Tn (330/100)

The heat exchanger area may be calculated from Eqn. (12.19).
oA = 0 _ _ (150000)
UAT,, (800) (192.64)
(b) Figure 12.7 is a qualitative representation of the temperature distribution in a counter ﬂow case.
Here AL=T,,-T .= 360 - 200 = 160°C

=0.973 m?

AL =T, ,~ Tc,,- =300-30 = 270°C



er =

Bquation (12.20) yields
160 -
AT, = 0=210 510
I (160270)
Equation (12.19) gives
0 (5000 oo

TUAT,  (600)(2102)

Thus we see that for the same terminal temperatures of fluids, the surface area required for a count
fow arrangement is less than that in a paralle] flow arrangement.



12.5.3 Condensers and Evaporators

Two special forms of heat exchangers, namely condensers and evaporators, are employed in many
industrial applications. One of the fluids flowing through these exchangers changes phase. The temperatye
distributions in these exchangers are shown in Fig. 12.8. In the case of a cor}denser, the hot fluid wi|
remain at a constant temperature, provided its pressure does not change, while the temperature of the
cold fluid increases. This is possible only when C, > C, , in fact, C} = c°. In the case of an evaporator
C, < C, or C,—> oo, the cold fluid temperature remains uniform and it undergoes a phase change.

y Yi
Ch?bm l T Th,i
Th, i - AT, ho
Te, o0
AT, /r ATy
1
Co —== 'A%Th,o
\ Te, i T 1 Te o
Tc,i
_— - X
1 2 g 1 2

(a) ‘ (b)

Fig. 12.8 Temperature Distribution of Fluids in () Condenser (b) Evaporator
T
Itis interestir;g to note thaﬁn a phase change process it is immaterial whether we have parallel flow,
counter flow or cross flow arrangements. Use of Eqn. ( 12.21) can still be made of in these exchangers.
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Example 12.6 .
Saturated steam at 120°C i condensing on the outer tube surface of a single pass heat exchanger, The

heat transfer coefficient is U, = 1800 WK . Determine the surface area of a heat exchanger cpab
of heating 1000 kg/h of water from 20°C to 90°C. Also compute the rate of condensation of steay

h = 2200 KT Ag.

Solution
The temperature distribution in a condenser is shown in F 8. 128 (o)

_AT-47,

m-

- ( h,i_Tc,i) - (Th,i* Tc,o)

[
AT -
In (AT,/AT)) )\ (Y}I,i—Tc,i)/(Ez,i_TC:O)]




= (120 - 20) - (120 - 90)
In [(120 - 20)/120 = 90)]

_100-30 _ 70
In 10/3) 1.204 58.14°C
The rate of heat transfer

Q = n'tc (Tc,o'— Tc,i)

_ (1000
= (3600 ](4186? (90 - 20)

=813944 W
- /

Q 813944
T UAT,, (1800)(58.14)

=0.78 m>

o 81394.4

5" n,,  (1000)(2200)

_1332ke/h. <

= 0.037 kg/s




1254 Multiple-pass and Cross Flow Heat Exchangers

The flow conditions in multiple-pass and cross flow heat exchangers are much more complicated than
hose in concentric tube, single pass heat exchangers. For these complex situations, the determination of

the mean effective temperature difference is so difficult that the usual practice is to modify Eqn. (12.19)

by a correction factor, F, giving
Q = UA (FAT,,) (12.24)
Wherein AT, is the LMTD for a counter flow double pipe arrangement with the same hot and cold
fuid temperatures as in the more complex design. Expressions for the correction factor, F, for various
ross flow and shell-and-tube designs have been developed (see STEM A4: 1978; Kem; 1957; Jakob:
1957). A more convenient way of representing these correction factors is the chart or graphical form.
Comection factors for several different types of heat exchangers are given in Figs. 12.9 through 12.12,
tcording to Incropera and Dewitt (1981). In these figures, the notation (7, ¢) has been used to specify
e fid temperature, ¢ being used for the tube fluid and T for the shell fluid. The two temperature ratios,

Pand R are defined as

Agood design should involve the selection of parameters P and R such that the value of Fis always

Breatey than 0.7 5

- m e ———
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Example 12.7 b
Saturated steam at 100°C is condensing on the shell side of a shell-and-tube heat exchanger, The coolip

water enters the tubes at 30°C and leaves at 70°C. Calculate thej'c.affective log mean temperature differenCe
if the arrangement is (/) counter flow, (ii) parallel flow and (iii) cross flow.

!
Solution :&

(1) Counter flow
AT, — AT, _ (100 - 70) — (100 — 30)

Al =1y (AT /AT, In (70/30)
_30-70_ 472°C
In (3/7)

(i1) Parallel flow
AT, — AT, (100 - 30) — (100 — 70)

"~ Tn (AT,/AT,) In (70/30)
_70-30_ 4720
In (773)

(iif) Cross flow
Referring to Fig. 12.12 for a single pass cross flow exchanger, one fluid mixed and the other unmixed,
the value of the correction factor, F can be read off for the following values of P and R:
R Li=% _ 100—100=O
ok 70 - 30
T,—t, 100 -30

4 =0.571
7

We observe that F =1.0

- FAT,, = 47.2°C

Thus we see that when one of the fluids in a heat exchanger, changes phase, (at constant temperature),
it is immaterial whether we have parallel flow, counter flow or cross flow arrangements. The rate of
heat transfer in all these modes will remain the same.



Example 12.8

In a food processing plant water is o be cooled trom 18°C to 6.5°C by using brine solution enfering a
an inlet temperature of -1,1°C and leaving at 2.9°C. What area s required when using a shell-and-tute
heat exchanger with the water making one shell pass and the brine making two tube passes? Assume an

average overall hj('it transfer coefficient of 850 W/’ and a design heat load {)f 0000 W,
Solution oLl COJ (5 ()EC@ { sl i

The nlet and outlet temperam;{:s of the tube and shell fluids are;

h 5 .\
Shell side:T,-/=18°C, [,=65C " (Note: T = outlet temperature)

: on L
Tubeside: £, =-LI'C, £ =29°C -



HE"' - -
" LMTD for a counterflow arrangement would be given by Eqns. (12.20) and (12. 22)

_ _AL-AT, _ (18-29)-(65+1.)
In (AT/ATy)  In [(18 - 2.9)/(65 + 1.1)]

SR =1092°C
i (151 06865
16
The parameter P and R are evaluated as "T ) L\O(.*
(F = B ¥
_29+11 40 o0 ¢ o
T—t S 18411 191 — P F

T-—T . 18=6s 1L
b~k T 29+1.1 40

Then the correction factor, from Fig. 12.9, for the above values of P and Ris 0.97. = = O+ 93
The required heat transfer area is determined from Eqn. (12.24). -

=2.875

U 6000
T U(FAT,) (850)(0.97)(10.92)
— 0.67 m> 0%

AN



BPRA
romple 12.9 -0
et Exemple 12.8 for two shell passes and four tube passes.

Wton
Tovlues of R and P are the same as in the last example, but Fig, 12.10 must now be used to obtain £

Hich s ~ 0,983,

6000
(850)(0.985)(10.92)

A=

- (656 m".



) EFFECTIVENESS—NTU METHOD OF HEAT EXCHANGER ANALYSIS

lnl etermal analysis of various type of heat exchangers by the LMTD method, an equation of the type

0 (1224) has been used. This equation is pretty simple and can be used in the design of heat
mh gerswhen all the terminal temperatures are known or are easily determined. The difficul lty arises

etmergupe of e fluids leaving the exchanger are not known, This type of situation is encountered
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in the selection of a heat exchanger or when the exchanger is to be run at off design conditiong
Although the outlet temperature and heat flow rates can still be found with the help of the chané
described earlier yet it would be possible only through a tedious trial and error procedure. In such caseg
it is preferable to utilise an altogether different method known as the Effectiveness-NTU method |

The effectiveness method is based on the effectiveness of a heat exchanger in transferring a given
amount of heat, To obtain an expression for the rate of heat transfer without involving any of the outlet
temperatures let us first introduce the term effectiveness, €, as

Actual heat transfer
Maximum possible heat transer

Effectiveness =

or €= £ (12.25)
~ Onex
The actual rate of heat transfer, 0, can be determined by either Eqns. (12.9) or (12.10). Q,,,, isthe

rate of heat transfer that a counterflow heat exchanger of infinite area would transfer with given inlet
temperatures, flow rates and specific heats. Also we recognise that the maximum possible heat transfer
would be obtained if one of the fluids was to undergo a temperature change equal to the maximum
temperature difference present in the exchanger. We consider two distinct cases to illustrate this point.



Th. = Tc, 0
Th,o =Tc,i

(b)
Fig. 12.13 Temperature Distribution in a Counter Flow Heat Exchanger of Infinitely Large Area

@ ¢,>c,

For th.is type of exchanger, with no external heat losses, the outlet temperature of the cold fluid will
equal the mle.t te.mpffratur-e of the hot fluid (since the area available for heat transfer is infinite). The
temperature distributions in the fluids are shown in Fig. 12.13 (). The maximum rate of heat transfer is

then given by
Qmax = Cc (]::,0 - T;,,')

But Tc o= Th i

Orax=C. (T, - T.,) - (12.26)

Also _ | 0=C I, ,-T.,;) (12.10)
) g<c

In this case the outlet temperature of the hot fluid would equal i
th old
fluid, as shown in Fig. 12.13 (b). So AL e fampemgric g
Qmax = C" (Th.i - Th,a)
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|
t T}u. 0= Tc,,'
Bu Onax =Gy (T, =T, ) | (12.27)
' Q=C,(T,,~T,,) (12.9)
A (l,?king at Equs. (12.26) and (12.27) we may write the general expression
g Omax = Coin (T}l.:'_T;:,i) (12.28)

iete C is the smaller of C_and C,. Using Eqn. (12.25) as the definition of effectiveness, it follows
W min

hat:
_ Ch (Th,i_T;‘:.a)
&= (12.29)
Cmin (Th.i_Tc,i)
T =T,
€= Ce oo~ e) (12.30)
o Coin T, i~ Te,1) ‘

Once the effectiveness for a heat exchanger is known, its actual rate of heat transfer can be

determined by
Q=¢ Cyy (T, ~ T, ) (12.31a)

0=€Q,.. (12.31b)
Equation (12.31) is very significant because it expresses the actual rate of heat transfer by a heat
exchanger in terms of its effectiveness, C,;, and the difference between the inlet temperatures of the

wofluids. It does not refer to the outlet fluid temperatures and can replace the LMTD analysis effectively.
As will be shown in the following subsections, effectiveness for any heat exchanger can be expressed



c=c[UA Cp
C'mm Cmax (1

232)
min__ ¢ h : ; ' :
where 7T or C (depending upon their relative magnitudes).
UA |
The group c_ s called the number of fransfer units, NTU,
min .
Thus NTU = L (12.33)

min
NTU is a dimensionless parameter. It is a measure of the heat transfer size of the exchanger. The
larger the value of NTU, the closer the heat exchanger reaches its thermodynamic limit of operation.

1261 Effectiveness for a Parallel-Flow Heat Exchanger

Let us now determine the specific form of the effectiveness. NTU relation for a parallel flow heat

“Xchanger first, Assuming C..=C,,e from Eqn. (12.30) is
T;:,o . TCJ

B (12.34)

T}l.l B Tc-i



L ]

From Eqns. (12.9) and (12.10) we get
C M, c, _ 77’:,:‘ - 7'7:, o

min __

Cmm( "-Ih Cyy T::‘, o Tc,i
Rearranging Eqn. (12.16) in the form
Tho— Teo | —UA (. . Cumin
In Al | My | SR e, 1+ -Cm— (1
Aﬂ ‘ ’Th,i - T;:,i C:‘min \ max
or from Eqn. (12.33)
¥ —T c.. |
Mzexp —NTU | 1 + =min_ -
T}z,i - Tc,i Cmax _J

The left side of Eqn. (12.36) can be rearranged as
Th,o_T T;I,O_T.+T.—7—;‘,0

c o
z:,i—T T.;'tr_ e i

G i

which on substitution of the value of 7, , from Eqgn. (12.35) becomes

Cmin
T;z,o_T(':,o . (T;I.J'_Y::,i)__(ﬂ(Tc,o_Tc,i)_(Tc,o—zl‘,i)
7;1,1'_7::,1' z;z,i—T:s,i

C._. y
Cinax Crnax

Going back to Egn. (12.36) we get

Cma" Crnax

1 _l—exp (-NTU {1 + (Cmin /Crax )}
1+ (C

Notice that the expression for € contains U, 4 and the heat capacities only. Also had we started

Chin = €, we would have obtained the same expression for €. .

(1:

mm ax)}

o e e — - -



12.6.2 Effectiveness for a Counter Flow Heat Exchanger and other
Configurations

From an analysis like that made in the preceding section, the following relation for effectiveness ina
counter flow heat exchanger can be obtained

[-exp {-NTU] - (Cin/Co 1]
1-(C,, /C.) {exp - NTU[L - (Coin/C))

E =

(1239



Relarion

Double pipe:

parallel Flow

Counter Flow

Cross Flow:

Both Fluids unmixed

Both Fluids mixed

Coax mixed, C,;, unmixed
Crax Unmixed , C, ., mixed

Shell-and-Tube:

One shell pass, 2, 4, 6 tube passes

T
Wo shell pass, any multiple of 4 tubes

e caa

_l-exp[-N(1+0)]
1+C

S

_l-exp[-N (i~ O]
1-Cexp[-N (1-0O)]

C
e=1—-exp {: [exp (—NCn) — l]}, where n = N2

[ 1 . C 1]-l
c = + —
1—exp(-N) 1—exp(-NC) N

e—ao fi-ew[c (-]}

e=1—exp {IIC [1-exp -NO)J}

172

1+ exp[—N 1+ cz)""] B
e exp[-—N a+ Cz)lrz].

R =l

El=2{1+C+(l+Cz)
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Fig. 12.14 Effectiveness for Parallel Flow Heat Exchanger
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Fig. 12.15 Effectiveness for Counter Flow Heat Exchanger



Vo 232.63 T

pxample 12.13 .
Water enters a counter flow, double pipe heat exchan

ger at 15°C, flowing at the rate of 1300 kg/h. It is
heated by oil (C, = 2000 J/kgK) flowing at the rate of 550 kg/ from the inlet temperature of 94°C.
Foran area of 1 m* and an overall heat transfer coef

ficient of 1075 W/m? K, determine the total heat
ransfer and the outlet temperatures of water and ojl.

Solution |
Taking the specific heat of water as 4186 J/kg K the heat capacity rates are

water: C, =, C,=P0EO o, 6w
¢ : (3600)
il C,= i, Cy = 2oN20) _ 30555 Wik
in Which case

= C,=305.55 WK

0.2

Cmin
ang | Cmin o 305.5 =
Cope 151161



UA _ (1079)()

_ =3.32
o = C., 30555
From Fig. 12.15 the heat exchanger effectiveness is
e =0.94

Orax = Coin (@, i = T ;) = (305.55) (94 — 15) = 24138.5 W

Actual heat transfer 0 =e Q__ =22690.2 W
Then by energy balance,

¢, i

Outlet temperature of water T, ,= Cg +T
c

v 22 +15=30°C
1511.61
Outlet temperature of oil, Lo=T,; - —CQ_
h
=94 - .l =19.74°C.

305.55



Water enters a cross flow heat exchanger (both fluids ummixed) at 3°C and flows at the rate of 460 ke
t0c00l 4000 kg/h of air that i initially at 40°C. Assume the Uvalue to be 150 W/m*K. Foran exchanger

surface area of 25 m?, calculate the exit temperature of air and water.

Solution
Taking the specific heats of water and air to be constant at 4180 J/kgK and 1010 J/kgK respectively

we have

A i €, (4000)(1010) _ 12290 WK
3600
Water: m, C.= Ol 534111 WK
3600
In which case

C.=C=1122 WK



- Coin 112222 091

C Syl

max

vy = VA 0009

C.. 112222
From Fig. 12.18 the effectiveness is then

=092
The heat transfer rate, ), is given by

(=€ Cmin (Th,i_ T::;)

=(092) (112222) (40 - 5) = 36135.5 W
Then by energy balance,



outlet temperature of water,

outlet temperature of air,
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Radiation



Thermal radiation is an electromagnetic
phenomenon generated by the thermal
motion of particles in matter.

All matter with a temperature greater
than absolute zero emits thermal radiation.

All bodies emit radiation to their surroundings
through electromagnetic waves due to the
conversion of the internal energy of the body
into radiation.

Particle motion results in the charge

acceleration which produces electromagnetic
radiation.



Since electromagnetic waves can also travel
through a vacuum hence, in contrast to the
conduction and convection heat transfer, it
can take place through a perfect vacuum.

Thus, when no medium is present, radiation
becomes the only mode of heat transfer.

Common examples are the solar radiation
reaching the earth and the heat dissipation
from the filament of an incandescent lamp.

Thus heat is transferred between two bodies
over a great distance.
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Type of rays

Wavelength A, um

Cosmic rays

up to 4 X 1077

Gamma rays

A% 1077 ta 1€ 107

X-rays 1 %1077 16 2 1072
Ultraviolet rays 1 X 107 to 0.38
Visible (light) 0.38-0.78

Infrared rays

Near (0.78-25

Far 25-1000

Thermal radiation

0.1-1000

Radar. television and radio

I % 107w 2 x 16™

Spectrum of

electromagnetic radiation



 Waves falling in the range of 0.1 to 100pum
wave length are called thermal radiation

e According to the quantum theory, the thermal
radiation propagates in the form of discrete
guanta, each quantum having an energy of

E=hv
Where h = Planck’s constant = 6.625*10>* J-s

v = Frequency of quantum



Reflection, Absorption, and
Transmission of Radiation

* When radiation falls on a body, a part of it
may be absorbed, a part may be reflected and
the remaining may pass through the body.

e The fraction of the incident radiation

absorbed by the body is transformed into
heat.



When radiation energy is incident on a body, it is partially reflected, partially trans-
mitted and partially absorbed as shown in Fig. 7.3. The reflectivity p is defined as the
fraction of the incident radiation reflected from the surface of the body,

Incident Reflected
radiation t i radiation
AWM Absorbed

% Transmitted radiation

Reflection, transmission and absorption of radiation.



Q=04+0r+0r

Dividing both sides of the equation by O, we get

01 Ok Or
0 0 0

|

The first fraction in the equation 1s known as absorptivity o, second 1s reflectivity
p, and the third fraction 1S transmissivity 7. Hence,

o+p+7=1



The reflectivity is defined as the fraction of
incident radiation reflected from the surface
of the body.

The transmissivity is defined as the fraction of

the incident radiation transmitted through the
body .

The absorptivity is defined as the fraction of
incident radiation absorbed by the body.

Bodies which do not transmit radiation are
called opaque.



If the transmussivity 7 of
are equal to zero and whole of

hody 15 equal to ong, the absorptivity and reflectivaty
 the incident radiation would pass through the body.

Such a body is termed as

hsolutely transparent or diathermanous. The only

substance found to be perfectly diathermanous i crystalline pieces of rock salt. Air
has nearly zero absorptivity and reflectivity. However, polyatomic gases, such as
carbon dioxide, methane, and water vapour are capable of absorbing heat radiation,

* A body with reflectivity of unity will reflect
whole of the incident radiation and is termed

as white body.



Concept of a Black body

[f the entire incident radiation is absorbed by the body, the absorptivity o = 1.
Such a body is termed as a blackbody. Only a few surfaces, such as carbon black,
platinum black, and gold black, approach the absorption capability of a blackbody.

[t 1s to be noted t

hat the blackbody derives its name from the observation that

surface appearing
light.

nlack to the eye 1s normally good absorber of incident visible



No actual body is perfectly black, the concept of a
black body is an idealization with which the
radiation characteristics of real bodies can be
conveniently compared.

Real bodies do not emit as much as energy as
black body and hence their emissivity is less than
one.

A black body plays a role in thermal radiation
similar to the idealized Carnot cycle in
thermodynamics with which real cycles are
compared.

A black body is regarded as a perfect absorber of
incident radiation.



The total radiation emitted by a black body is
a function of temperature.

The emissivity of a substance is a measure of
its ability to emit radiation in comparison with
a black body.

A black body is a perfect emitter.

Intensity of radiation is defined as the
radiation emitted in any direction.

The radiation intensity of a surface is defined
as the rate of heat flux emitted by it per unit
area.




Laws of Radiation

1. Planck’s Law:

* Electromagnetic radiation consists of flow of quanta or
particles and the energy content (E) of each quantum is
proportional to the frequency.

* |tis given by the following equation:

* E=hv
Where, E = Energy content
h = Planck’s constant = 6.625 x 10> J.s
v = Frequency

* |tisclearthat greater the frequency, shorter the wavelength
and greater is the energy content of the quantum. In other
words, shorter the wavelength greater is the energy of the
qguantum. Therefore, quanta of ultraviolet light are more
energetic than are quanta of red light.



2. Kirchoff’s Law:

e Kirchoffs law states that the absorptivity (a) of a
substance for radiation of a specific wavelength is
equal to its emissivity for the same wavelength
and is given by the following equation:

a(A) =e(A)

* Any grey object (other than a perfect black body)
which receives radiation, disposes off a part of it
in reflection and transmission.

* The absorptivity, reflectivity and transmissivity
are each less than or equal to unity.



Kirchhoff’s Law

The law states th}at at any temperature the ratio of emissive power E to the
absorptivity a is a constant for all bodies and equals the emissive power of a
blackbody at the same temperature, i.e.,

Since the ratio of the emissive power of a gray body to that of a blackbody at the
same temperature is defined as emissivity, hence

E, E,
— =01 =8
Ep I

==&

5
Ep
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For monochromatic radiation, the law states that the ratio of the emissive power
at a certain wavelength to the absorptivity at the same wavelength is the same for all
bodies and 1s a function of wavelength and temperature, i.e.,

= TRL R By = £ T)

" Monochromatic radiations are such radiations which

are characterized by a single frequency.
"|n practice, radiation of a very small range of
frequencies which can be described by stating a single

frequency.



Wien's Displacement Law

* When the temperature of a blackbody
radiator increases, the overall radiated energy
increases and the peak of the radiation curve
moves to shorter wavelengths.

* When the maximum is evaluated from
the Planck radiation formula, the product of
the peak wavelength and the temperature is
found to be a constant.



Power density (10'3 watts/m? )
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Wien established a relationship between the temperature of  black body and the
wavelength at which the maximum value of monochromatic emissive power occurs, A eak'
monochromatic emissive power occurs at & particular wavelength, Wien’s displacement law star '
that the product of . and Tis constan, e,




* Wavelength (A, ,,) of maximum intensity of
emission (W) = b/T

Where,

* A, isthe wavelength at which maximum

radiation is emitted. It decreases as the
temperature increases.

b is constant = 2897
T is the temperature of the surface in Kelvin
Hence, A (1) =2897 T



U

Maximum wavelength (g for stn
6000 (°K)

= 0,483 g or 0.5

_ a8 (1°K)
300(°K)

Maximum wavelength (A, ) for earth = 0,66 jt or 10.04



* The temperature of the sun is 6000 °K for
which the value of maximum wave length is
0.5y, and that of the earth the average
temperature is 300 °K for which the value of
maximum wavelength is 10.

* Out of the total energy emitted by sun, 7 per
cent is with wavelength less than 0.4y, 44 per
cent is with a wavelength ranging from 0.4 —
0.7n and 49 per cent is having wavelength
greater than 0.7



Stefan-Boltzman’s Law:

This law states that the intensity of radiation
emitted by a radiating body is proportional to
the fourth power of the absolute temperature
of that body.

Radiation Heat Transfer, Q = coT”

Where,

o = Stefan-Boltzman’s constant =6.25*%10-34 Js
€ = Emissivity of a body (0 <s>1.0)

T = Absolute temperature of the surface in °K.



LAMBERT'S COSINE LAW

The law states that the total emissive power E, from a radiating plane surface in any direction is
directly proportional fo the cosine of the angle of emission. The angle of emission 8 is the angle
subtended by the normal to the radiating surface and the direction vector of emission of the receiving
surface. If £, be the total emissive power of the radiating surface in the direction of its normal, then

E, =E cosd
The above equation is true only for diffuse radiation surface. The radiation emanating from a

point ona surface is termed diffused if the intensity, I, is constant, This law is also known as Lambert's
law of diffuse radiation.



Radiation Shape Factor

* Radiation shape factor is defined as the fraction of
radiant energy that is diffused from one surface
element and strikes the other surface directly with
no intervening reflections.

* |tis also called view factor or configuration factor.

* If A1l is the total area of radiating surface of body-1
naving shape factor F12F12 w.r.t. receiver body-2
then the total radiant energy leaving surface-1 and
directly intercepted by surface-2 is =A1F12




Shape factor of a radiant body depends on the
1. Geometrical dimensions i.e. surface area

2. Configuration of radiating surface with
respect to receiver &

3. Inter-spatial distance of radiant body with
respect to receiver.



 The shape factor of a radiating body is inversely

proportional to its surface area emitting radiant
energy l.e.

Shape factor a 1/Surface area of emitter

* The shape factor of a radiating body is directly

proportional to the surface area of receiving body
l.e.

Shape factor a Surface area of receiver

* The shape factor of a radiating body is inversely

proportional to inter-spatial distance between
emitter and receiver bodies i.e.

Shape factor a 1 / Inter-spatial distance



* For steady state
condition of radiation
heattransfer,

Rate of radiant energy lost

by body-1 = rate ofradiant

energy received by body-2
 A1F12=A2F21



